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ABSTRACT

The 4D/RCS architecture provides a reference model for military unmanned vehicles on

how their software components should be identified and organized. It defines ways of interacting

to ensure that missions, especially those involving unknown or hostile environments, can be

analyzed, decomposed, distributed, planned, and executed intelligently, effectively, efficiently

and in coordination. To achieve this, the 4D/RCS reference model provides well defined and

highly coordinated sensory processing, world modeling, knowledge management, cost/benefit

analysis, behavior generation, and messaging functions, as well as the associated interfaces. The

4D/RCS architecture is based on scientific principles and is consistent with military hierarchical

command doctrine.

The 4D/RCS reference model architecture is naturally adaptable to the DoD/Army
standards in a combined domain of vehicle systems, combat support, and software engineering.

4D/RCS provides an architectural framework to facilitate component and interface standards

development, including command and control, sensors, communication, mapping, operating

environments, safety, security, software engineering, user interface, data interchange, and

graphics. As such, the 4D/RCS reference model architecture forms a framework for software

engineering standards and guidelines.
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1.0 INTRODUCTION

4D/RCS is a methodology for conceptualizing, designing, engineering, integrating, and

testing intelligent systems software for vehicle systems with any degree of autonomy, from

manually operated to fully autonomous. The theoretical foundation for this methodology is the

4D/RCS reference model architecture.

Df. A methodology is a set of methods, rules, and postulates employed by a discipline.

Df. An architecture is the structure that identifies, defines, and organizes components,

their relationships, and principles ofdesign; the assignment offunctions to

subsystems and the specification of the interfaces between subsystems.

Df. A reference model architecture is an architecture in which the entire collection of

entities, relationships, and information units involved in interactions between and

within subsystems and components are defined and modeled.

Df. An intelligent system is a system with the ability to act appropriately in an

uncertain environment.

Df. An appropriate action is that which maximizes the probability of successfully

achieving the mission goals.

Df. A mission goal is a desired result that a mission is designed to achieve or maintain.

Df. A result is represented as a state or some integral measure ofa state-time history.

Df. A mission is the highest level task assigned to the system.

The 4D/RCS reference model architecture has the following properties:

1. It defines the functional elements, subsystems, interfaces, entities, relationships, and

information units involved in intelligent vehicle systems.

2. It supports the selection of goals, the establishment of priorities and rules of

engagement, the generation of plans, the decomposition of tasks, and the scheduling

of activities; and it provides for feedback to be incorporated into control processes so

that both deliberative and reactive behaviors can be combined into a single integrated

system.

3. It supports the processing of signals from sensors into knowledge
1

of situations and

relationships; and it provides for the storage of knowledge in representational forms

that can support reasoning, decision-making, and intelligent control.

1 Some researchers prefer a clear distinction between the terms information and knowledge. 4D/RCS, being a rich

architecture, supports both and adopts the concept of a smooth transition between information and knowledge.
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4. It provides both static (typically for long-term) and dynamic (typically for short-term)

means for representing the richness and abundance of knowledge necessary to

describe the environment and state of a battlefield and the intelligent vehicle systems

operating within it.

5. It supports the transformation of information from sensor signals into symbolic and

iconic representations of objects, events, and situations, including semantic,

pragmatic, and causal relationships; and it supports transformations from iconic

(pictorial) to descriptive (symbolic) forms, and vice versa.

6. It supports the acquisition (or learning) of new information and the integration and

consolidation of newly acquired knowledge into long-term memory.

7. It provides for the representation of values, the computation of costs and benefits, the

assessment of uncertainty and risk, the evaluation of plans and behavioral results, and

the optimization of control laws.

Details of these properties will be given in the corresponding sections later in this

document.

Standards Orientation

4D/RCS draws on a number of commercial and military standards to facilitate the design,

development, debugging, maintenance, and upgrading of subsystems and software. 4D/RCS is

compatible with all relevant standards developed under the following U.S. Department of

Defense programs: the DoD Joint Technical Architecture (JTA) [DoD 02] and Technical

Reference Model (TRM) [TRM 02], Battlefield Digitization [PEO C3T 02], the C4ISR
Architecture Framework [CISA 02], the Army Joint Technical Architecture-Army [JTA-A 02]

and Weapon System Technical Architecture Working Group (WSTAWG) [WSTAWG 02], the

Office of the Secretary of Defense (OSD) Joint Architecture for Unmanned Ground Systems

(JAUGS) [JAUGS 02], and the TARDEC Vehicle Electronics (Vetronics) Reference

Architecture (VRA) [Vetronics 02, VRA 01].

JTA and JTA-A define an architecture to have three interrelated views, operational

architecture, technical architecture, and systems architecture. The 4D/RCS reference model

architecture specifies tasks, commands, and their planning and execution, organizational units,

and information flows that support the operational architecture. 4D/RCS provides a development

and application framework for the standards and conventions that the technical architecture

covers. The 4D/RCS control hierarchy provides a logical layout that supports the system

architecture. These demonstrate the comprehensiveness of 4D/RCS, covering all the JTA and

JTA-A architectural aspects.

4D/RCS provides a methodology by which military systems that meet the operational

requirements defined in the JAUGS Domain Model can be engineered to meet the performance

specifications defined in the JAUGS Reference Architecture. 4D/RCS has been included in the

current draft TARDEC VRA as a mandate for robotic systems. 4D/RCS endorses VRA's
assessment that the VRA and 4D/RCS development teams will monitor each other's progress

10



and continue to interact on a regular basis. 4D/RCS is contributing to the various Integrated

Product Teams (IPT) in WSTAWG.

4D/RCS plans to continue contributing to major DoD standards organizations and

fostering an open system based architectural environment. Such an environment facilitates

major DoD goals of interoperability and time/cost reduction for system development. An open

system based architectural environment also facilitates the Army’s goal of transitioning to the

Objective Force.

Science and Technology Orientation

4D/RCS integrates the NIST Real-time Control System (RCS) [Albus and Meystel 96]

architecture with the German (Universitat der Bundeswehr Munchen) VaMoRs 4-D approach to

dynamic machine vision [Dickmanns, et al. 94]. It incorporates many concepts developed under

the U.S. Department of Defense Demo I, Demo II, and Demo HI programs [Albus et al. 02,

Shoemaker et al. 99, Shoemaker et al. 98, Haas, et al. 96], which demonstrated increasing levels

of robotic vehicle autonomy. The theory embodied in 4D/RCS borrows heavily from cognitive

psychology, semiotics, neuroscience, and artificial intelligence. It incorporates concepts and

techniques from control theory, operations research, game theory, pattern recognition, image

understanding, automata theory, and cybernetics from the application domain perspective. The

4D/RCS architecture consists of a multi-resolution hierarchy of feedback control loops between

sensing and acting that integrate reactive behavior with perception", world modeling, and

planning - and forming a hybrid deliberative/reactive system [Rasmussen 02, 01, Maximov 92].

A review of projects that have used RCS and a description of how RCS relates to other

intelligent system architectures are contained in [Albus and Meystel 01] and [Meystel and Albus

02].

4D/RCS also adopts many software engineering techniques, including object-orientation

[Huang et al. 01, Huang and Messina 96], reuse, interoperability [Gazi et al. 01], component-

based software [Horst 00], software specification [Messina and Huang 02], testing, and formal

models [Dabrowski 99].

Domains

Versions 0.1 and 1.0 of the 4D/RCS architecture were designed to support the design,

engineering, integration, and test of intelligent system software for experimental unmanned
ground vehicles developed under the Army Research Laboratory Demo HI program [Shoemaker

et al 99, Bomstein 02, Hong et al. 02a-d, Murphy et al. 02]. Version 2.0 of the 4D/RCS
reference model architecture is intended to facilitate the integration of a wide variety of

unmanned and manned vehicles and sensors (ground, air, and amphibious) into an effective

fighting force system-of-systems within the framework of the Army Future Combat Systems

(FCS).

4D/RCS terms. Will be defined in the document.
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1.1 Scope

The 4D/RCS methodology addresses the problem of intelligent control at three layers of

abstraction: (1) a conceptual framework; (2) a reference model architecture; and (3) engineering

guidelines. They are a series of successively refined descriptions in terms of the details and

specific features; in other words, the upper layers mold the lower. The conceptual framework

provides the overall shape for the reference model architecture. The reference model architecture

provides guidance for how to apply the engineering guidelines.

If, during implementation, the engineering guidelines require changing, it will be

desirable to do so without changing the reference model architecture, since adherence to the

reference model helps ensure that the engineering guidelines are compatible with one another.

The system builder must understand the reference model in order to apply it.

1.1.1 A Conceptual Framework

The 4D/RCS architecture is derived from the proven RCS architecture. RCS is domain

independent. The 4D/RCS conceptual framework is a mapping of RCS tenets to the domain of

intelligent vehicle systems for military use.

At the highest layer of abstraction, 4D/RCS is intended to provide a conceptual

framework for addressing the general problem of intelligent vehicle systems, operating in man-

made and natural environments, pursuing mission goals, and supervised by human commanders.

The 4D/RCS conceptual framework spans the entire range of operations that affect

intelligent vehicles, from those that take place over time periods of milliseconds and distances of

millimeters to those that take place over time periods of months and distances of thousands of

kilometers. The 4D/RCS model is intended to allow for the representation of activities that range

from detailed dynamic analysis of a single actuator in a single vehicle subsystem to the

combined activity of planning and control for hundreds of vehicles and human beings in full

dimensional operations covering an entire theater of battle. In order to span the wide range of

activities included within the conceptual framework, the 4D/RCS adopts a multilevel hierarchical

architecture with different range and resolution in time and space at each level
3

. The 4D/RCS
architecture design integrates easily into the information intensive structure of Future Combat

Systems (FCS) [Boeing 02] and other advanced concepts for the armed forces of the United

States in the 21st century. For example, a current implementation of 4D/RCS is being interfaced

to a distributed, interactive combat simulation within the OneSAF simulation/training system

[OTB 02]. This enables real and/or virtual vehicles controlled by the 4D/RCS architecture to

participate in force-on-force exercises with tens or hundreds of real or virtual vehicles, some

' The term level is used interchangeably with “4D/RCS hierarchical control level” throughout this document, unless

explicitly stated otherwise.
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manned, some controlled by 4D/RCS real-time controllers, and others controlled by OneSAF
autonomous behaviors.

4D/RCS provides a progressive framework in terms of human involvement. The full

range of operations conforming to 4D/RCS can be either totally performed by soldiers or fully

autonomous with human supervision.

1.1.2 A Reference Model Architecture

At a lower layer of abstraction, the 4D/RCS is a reference model architecture. The

architecture applies sound hierarchical control principles and, at the same time, closely follows

the existing command and control structure of the military hierarchy in assigning duties and

responsibilities and in requiring knowledge, skills, and abilities.

The 4D/RCS defines functional processes at each hierarchical control level such that each

process embodies a set of responsibilities and priorities that are typical of operational units in a

military organization. This enables the 4D/RCS architecture to map directly onto the military

command and control organization to which the intelligent vehicles are assigned. The result is a

system architecture that is understandable and intuitive for the human commander and integrates

easily into battle space visualization and simulation systems.

1.1.3. Engineering Guidelines

At a still lower layer of abstraction, the 4D/RCS is intended to provide engineering

guidelines for building and testing specific intelligent vehicle systems. In order to build a

practical system in the near term, 4D/RCS engineering guidelines have been developed bottom-

up, starting with a single vehicle and its subsystems. The 4D/RCS engineering guidelines define

how intelligent vehicles should be configured to work together in groups with other intelligent

vehicles, both manned and unmanned, in units of various sizes.

The type of problems to be addressed by the 4D/RCS engineering guidelines include:

• Navigating and driving both on and off roads,

• Responding to human supervisor commands and requests,

• Accomplishing mission goals and priorities amid the uncertainties of the battlefield,

• Cooperating with friendly agents in conducting tactical behaviors,

• Acting appropriately with respect to hostile agents, and

• Reacting quickly, effectively, and resourcefully to obstacles and unexpected events.

Intelligent vehicle systems typically consist of a variety of sensors, actuators, navigation

and driving systems, communications systems, mission packages, and weapons systems

controlled by an intelligent controller.

Sensors may include charge coupled device (CCD) television cameras, laser radar

(LADAR) range imaging cameras, forward looking infrared (FLIR) cameras, radar, acoustic

arrays, chemical or radiation detectors, and radio frequency receivers, as well as inertial, force,

13



pressure, and temperature sensors. Actuators may include motors, pistons, steering, brakes,

throttle, lasers, radio frequency (R.F.) transmitters, and pointing systems for cameras, antennas,

and weapons.

Navigation and driving systems may include computer aided mission planning systems,

digital terrain map management systems, route planning systems, GPS and inertial guidance

systems, and machine vision systems for on and off road driving, with obstacle avoidance, target

tracking, object classification, and image understanding capabilities.

Communications may include microwave, packet radio, and lasers, and may include relay

via other ground vehicles, air vehicles, or satellite communications. Updates for terrain data or

over-the-hill visualization may be supplied by unmanned air vehicles or satellite surveillance

systems.

Mission packages may include reconnaissance, surveillance, and target acquisition

systems, range finders, laser designators, direct or indirect fire weapons, counter mine

equipment, sniper detection equipment, smoke generators, electronic warfare equipment,

logistics support, or communications relay antennas. The weapons may include machine guns,

recoilless rifles, cannons, missile launching systems, mortars, or a variety of non-lethal weapons.

It is, therefore, an extremely challenging task to engineer these intelligent vehicle

systems. The 4D/RCS Engineering Guidelines address key software engineering issues that

facilitate the intelligent vehicle systems lifecycle processes, including:

Software Reuse

Reuse reduces system development costs. The 4D/RCS engineering guidelines can be

leveraged in software reuse at several levels of detail.

Minimally, the definition of an RCS_Node provides control software designers with a

framework for attacking the problem. The hierarchical decomposition guidelines help designers

decide on how to decompose the problem and assign responsibilities to software modules. This

could be considered reuse of software design and has a flavor akin to the use of architectural

patterns [Gamma 1994]. Merely following the textual descriptions of what the main sub-

components of an RCS_Node are, their responsibilities, and interrelationships provides initial

assistance to designers and developers.

NIST and other organizations have been investigating means of enabling reuse of

portions of 4D/RCS code. A Generic shell (see Section 5) provides generic computing models

for 4D/RCS-based hierarchical control systems, including interfacing and communication.

Developers apply the generic building blocks to all the control nodes and interfaces to build a

skeleton for their control systems. The developers then embed the application-specific behavioral

or processing algorithms into the skeleton and fill in the interprocess interface templates.
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A number of software engineering tools have been developed for constructing generic

shell modules. These range in degree of formality from C++ templates to Unified Modeling

Language (UML) and Architectural Description Languages (ADL) [Huang 2001] [Messina

2000] [Dabrowski 1999]. A.J. Barbera and M.L Fitzgerald have applied a task decomposition

based RCS approach to many industrial automatic systems and have developed a variety of tools

for visualization of control system execution. [ATR 02]. A RCS tool developed by John Horst at

NIST uses Control Shell [Horst 00]. Another RCS tool developed by Will Shackleford at NIST
is written in Java. [GaziOl] Additional tools are being developed at Ohio State University using a

LabView front end, [GaziOl] and by Pathway Technologies using MatLab as a front end

[Anathakrishnan02]
4

Tools that provide support for building, testing, and evaluating 4D/RCS-based systems

are also being experimentally created [Balakirsky 2002]. The architect could use tools to create

the initial specification for the system (hierarchy, timings, interfaces, etc.) and create the generic

shell versions for the RCS_Nodes. A repository of 4D/RCS-compliant software components

would then be available for developers to assemble directly or augment or customize. The tools

would provide graphical and interactive means of building a system that is compliant with the

reference architecture and that encourages (or enforces) reuse.

Interoperability and open systems

Complex, intelligent vehicle systems typically involve software components contributed

by multiple development teams. Component and interface standards are crucial to system

integration. 4D/RCS specifies nodes in terms of their functionality and interfaces. These present

a comprehensive framework for developing and applying the standards, which, in turn, present

open systems for components and subsystems to be easily integrated.

Large teams of software developers will have to work together. As technology evolves

and subsystems improve, it is desirable to be able to directly upgrade components within the

overall architecture to take advantage of improved capabilities. Therefore, an architecture such

as 4D/RCS is essential for defining the software decomposition and interfaces that enable

distributed development and component upgrades.

4
Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case

does such identification imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the

purpose.
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2.0 A CONCEPTUAL FRAMEWORK

The 4D/RCS conceptual framework demonstrates how intelligent unmanned vehicle

systems can be integrated into any military command and control structure.

Df. A framework is a description of thefunctional elements, the representation of
knowledge, and theflow of information within the system.

4D/RCS integrates the functional elements, knowledge representations, and flow of

information so that intelligent systems can analyze the past, perceive the present, and plan for the

future. It enables systems to assess the cost, risk, and benefit of past events and future plans, and

to make intelligent choices among alternative courses of action.

The 4D/RCS is a hybrid architecture, with both deliberative (reasoning and planning) and

reactive (rapid response to exigencies) capabilities. At every level of the control hierarchy there

are deliberative planning processes that receive goals and priorities from superiors and

decompose them into subgoals and priorities for subordinates at levels below. At every level,

reactive loops respond quickly to feedback to modify planned actions so that goals are

accomplished despite unexpected events. Thus, planning and decision making are distributed

throughout the hierarchy. At every level, plans are formulated, decisions are made, and reactive

actions are taken locally by the units that are most affected and best able to analyze the situation

and respond effectively.

At every level, sensory processing filters and processes information derived from

observations by subordinate levels. Events are detected, objects recognized, situations analyzed,

and status reported to superiors at the next higher level.

At every level, sensory processing and behavior generation processes have access to a

model of the world that is resident in a knowledge database. This world model enables the

intelligent system to analyze the past, plan for the future, and perceive sensory information in the

context of expectations.

At every level, a set of cost functions enable value judgments and determine priorities

that support intelligent decision making, planning, and situation analysis. This provides a robust

form of value driven behavior that can function effectively in an environment filled with

uncertainties and unpredictable events. It assures that intelligent vehicle systems will always

obey direct orders from human commanders, and when out of contact, will respect the goals,

priorities, and rules of engagement set by human commanders.

The 4D/RCS architecture maps naturally onto the military command and control

structure. At the top level of any military hierarchy, there is a human commander supported by a

staff that provides intelligence and decision support functions. This is where high-level strategy

is defined and strategic goals are established. The top level commander decides what kind of
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operations will be conducted, what rules of engagement will be followed, and what values will

determine priorities and shape tactical decisions.

Throughout the hierarchy, strategic goals are decomposed through a chain of command
that consists of operational units made up of intelligent agents (humans or machines), each of

which possesses a particular combination of knowledge, skills, and abilities, and each of which

has a well-defined set of duties and responsibilities. Each operational unit accepts tasks from a

higher level unit and issues sub-tasks to subordinate units. Within each operational unit,

intelligent agents are given job assignments and allocated resources with which to carry out their

assignments; the intelligent agents then schedule their activities so as to achieve the goals of the

jobs assigned to them. Each agent is expected to make local executive decisions to achieve goals

on schedule by solving local problems and compensating for local unexpected events. Within a

unit, each agent acts as a member of a team in planning and coordinating with peers at the same

level, while simultaneously acting as the commander of a subordinate unit at the next lower

level.

Each agent, within each operational unit, has knowledge of the world environment in

which it must function. This knowledge includes state variables, maps, images, and symbolic

descriptions of the state of the world. It also includes knowledge of objects and groups that exist

in the environment, including their attributes and relationships, and knowledge of events and

processes which develop over time. Knowledge is kept current and accurate through sensors and

sensory processing systems that detect events and compute attributes of objects and situations in

the world. Knowledge of the world also includes laws of nature that describe how the

environment behaves under various conditions, as well as values and cost functions that can be

used to evaluate the state of the world and the performance of the intelligent control system

itself.

At the bottom of the hierarchy, the system performs physical actions (e.g., the movement
of effectors such as wheels, tracks, arms, legs, thrusters, or control surfaces), which affect the

environment. Simultaneously, sensors measure phenomena - including the effects of the system

itself - in the environment. This process is a continuous loop of the environment affecting the

robotic system and the robotic system affecting the environment.

For any chain of command, an organizational chart can be constructed that describes

functional groupings and defines who reports to whom. However, organizational charts typically

do not show all the communication pathways by which information flows throughout the

organization. In particular, much information flows horizontally between agents and operational

units, through both formal and informal channels. Multiple agents within operational units share

knowledge about objects and events in the world, and status of other agents. For example,

agents operating on the battlefield often can see each other and may respond to requests for help

from peers without explicit orders from superiors. Also, plans developed in one operational unit

may be communicated to other units for implementation.

4D/RCS explicitly allows for the exchange of information between organizational units

and agents at the same level or different levels. Commands and status reports flow only between
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supervisor and subordinates, but queries, replies, requests, and broadcasting of information - by

posting in common memory or by messaging mechanisms - may be used to convey information

between any of the units or agents in the entire 4D/RCS architecture.

The 4D/RCS organizational chain of command is defined by the duties and

responsibilities of the various organizational units and agents and by the flow of commands and

status reports between them, not by access to information or the ability to communicate. This

means that while the relationships between supervisors and subordinates is in the form of a tree ,

the exchange of information between units and agents is a graph that, in principle, could be fully

connected. In practice, however, the communication network is typically not fully connected

because many of the units and agents simply have nothing to say to each other.

4D/RCS also explicitly allows the organizational hierarchy to be dynamically

reconfigured in real-time during operation. This permits the organizational chain of command to

change over time as units are added or removed from the chain of command, or moved from one

place to another in the organization. For example, a wing of unmanned aircraft may be under the

control of a base flight controller during take-off or landing, be handed off to a route flight

controller, and be transferred to a combat engagement controller during attack and battle damage

assessment. Similarly, unmanned ground vehicles may be transferred from one chain of

command to another as conditions change on the battlefield. Individual agents may be promoted

or replaced, and units reconfigured during combat operations to compensate for casualties.
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3.0 4D/RCS REFERENCE MODEL ARCHITECTURE

A reference model architecture is the core of 4D/RCS. The 4D/RCS reference model

architecture is characterized by a generic control node that is applied to all the hierarchical

control levels. The node features specific functions, interfaces, information structures, and

processing paradigms that enable intelligent behavior. The 4D/RCS hierarchical levels are

scalable to facilitate systems of any degree of complexity.

3.1 The 4D/RCS Hierarchy

Figure 1 shows a high level block diagram of a 4D/RCS reference model architecture for

a notional Future Combat System (FCS) battalion. 4D/RCS prescribes a hierarchical control

principle that decomposed high level commands into actions that employ physical actuators and

sensors. Characteristics such as timing and node functionality may differ in various

implementations.

IndirectFire — DirectFire — AntiAir

24 hr plans

replan every 2 hr

5 hr plans

replan every 25 min

1 hr plans

replan every 5 min

10 min plans

replan every 1 min

1 min plans

replan every 5 s

5 s plans

replan every 500 ms

500 ms plans

replan every

50 ms

Pan Tilt Iris Focus

Sensors and Actuators

Pan — Tilt Speed - Heading 50 ms Plans

Tl IT II 1 |

output every

5 ms

Figure 1: A high level block diagram of a typical 4D/RCS reference model architecture. Commands
flow down the hierarchy, and status feedback and sensory information flows up. Large amounts of

communication may occur between nodes at the same level, particularly within the same subtree of the

command tree. UAV = Unmanned Air Vehicle, UARV = Unmanned Armed Reconnissance Vehicle, UGS
= Unattended Ground Sensors
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At the Servo level, commands to actuator groups are decomposed into control signals to

individual actuators. In the example shown in Figure 1, outputs to actuators are generated every

5 milliseconds (ms). Plans that look ahead 50 ms are regenerated for each actuator every 5 ms.

Plans of individual actuators are synchronized so that coordinated motion can be achieved for

multiple actuators within an actuator group.

At the Primitive level, multiple actuator groups are coordinated and dynamical

interactions between actuator groups are taken into account. Plans look ahead 500 ms and are

recomputed every 50 ms.

At the Subsystem level, all the components within an entire subsystem are coordinated,

and planning takes into consideration issues such as obstacle avoidance and gaze control. Plans

look ahead 5 seconds (s) and replanning occurs every 500 ms.

At the Vehicle level, all the subsystems within an entire vehicle are coordinated to

generate tactical behaviors. Plans look ahead 1 min and replanning occurs every 5 s.

At the Section level, multiple vehicles are coordinated to generate joint tactical behaviors.

Plans look ahead about 10 minutes (min) and replanning occurs about every minute.

At the Platoon level, multiple sections containing a total of 10 or more vehicles of

different types are coordinated to generate platoon tactics. Plans look ahead about an hour (hr)

and replanning occurs about every 5 min.

At the Company level, multiple platoons containing a total of 40 or more vehicles of

different types are coordinated to generate company tactics. Plans look ahead about 5 hr and

replanning occurs about every 25 min.

At the Battalion level, multiple companies containing a total of 160 or more vehicles of

different types are coordinated to generate battalion tactics. Plans look ahead about 24 hr and

replanning occurs at least every 2 hours.

At all levels, task commands are decomposed into jobs for lower level units and

coordinated schedules for subordinates are generated. At all levels, communication between

peers enables coordinated actions. At all levels, feedback from lower levels is used to cycle

subtasks and to compensate for deviations from the planned situations.

Df. A task command is a command to a BG process to do a task, or to modify an

ongoing task.

Each node within the hierarchy shown in Figure 1 functions as a goal-driven, model-

based, closed-loop controller. Each node is capable of accepting and decomposing task

commands with goals into actions that accomplish task goals despite unexpected conditions and

dynamic perturbations in the world. At the heart of the control loop through each node is a rich,

dynamic world model that provides the node with an internal model of the external world. This

is illustrated in Figure 2. In each node, the world model provides a site for data fusion, acts as a
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buffer between perception and behavior, and supports both sensory processing and behavior

generation.

Mission Goal

i

Perception *-*f\Vorld ModelV-^ Behavior
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Action

Figure 2. The fundamental structure of a 4D/RCS control loop. An internal world model of the

external world provides support to both perception and behavior. Sensors measure properties of the

external world. Perception extracts the information necessary to keep the world model current and accurate

from the sensory data stream. Behavior uses the world model to decompose goals into appropriate action.

In support of behavior generation, the world model provides knowledge of the

environment with range and resolution in space and time that is appropriate to task

decomposition and control decisions that are the responsibility of that node. The world model

also provides simulation and modeling for planning and reasoning about the future. For

example, the world model can simulate results of hypothesized actions that can be evaluated and

compared with the current state of the world. This enables behavior generation to plan and

control actions that are most likely to achieve the given goal at minimum cost and maximum
benefit.

Df. Task decomposition is a process by which a task given to a BG process at one level

is decomposed into a set ofsequences ofsubtasks to be given to a set ofsubordinate

BG processes at the next lower level.

Df. Planning is a process ofgenerating and/or selecting a plan to accomplish a task or

job

Df. A state is the dynamic condition ofan entity or a process at a point in time.

In support of sensory processing, the world model provides predictions that can be

matched with observations for recursive estimation and Kalman filtering [Kalman 02]. The

world model also provides hypotheses for gestalt grouping and segmentation. Thus, each node

in the 4D/RCS hierarchy is an intelligent system that accepts goals from above and generates

commands for subordinates so as to achieve those goals.
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The centrality of the world model to each control loop is a principal distinguishing

feature between 4D/RCS and behaviorist (i.e., purely reactive) architectures [Brooks 91, 86].

Behaviorist architectures rely solely on sensory feedback from the world. They do not fuse

information from multiple sensors over time, nor do they integrate sensory feedback with a priori

knowledge. All behavior is a reaction to immediate sensory feedback. In contrast, the 4D/RCS
world model integrates all available knowledge into an internal representation that is far richer

and more complete than is available from immediate sensory feedback alone. This enables more

sophisticated behavior than can be achieved from purely reactive systems.

The character and structure of the world model also distinguishes 4D/RCS from

conventional artificial intelligence (AI) architectures. Most AI world models are purely

symbolic. In 4D/RCS, the world model is much more than a symbolic abstraction of the world.

It is, rather, a combination of instantaneous signal values from sensors, state variables, images,

and maps that are linked to symbolic representations of entities, events, objects, classes,

situations, and relationships in a composite of immediate experience, short-term memory, and

long-term memory.

Df. A map is a two-dimensional array ofattributes and entities that are scaled to, and

registered with, known locations in the world.

A high level diagram of the internal structure of the world model and value judgment

system is illustrated in Figure 3. Within the knowledge database
2

, iconic information in the form

of images and maps are linked to each other and to symbolic information in the form of entities

and events. Situations and relationships between and entities, events, images, and maps are

represented by pointers. Pointers that link symbolic data structures to each other form syntactic,

semantic, causal, and situational networks. Pointers that link symbolic data structures to regions

in images and maps provide symbol grounding and enable the world model to project its

understanding of reality onto the physical world. A world modeling process maintains the

knowledge database and uses information stored in the knowledge database to generate

predictions for sensory processing and simulations for behavior generation. Predictions are

compared with observations and errors are used to generate updates for the knowledge database.

Simulations of tentative plans are evaluated by value judgment to select the “best” plan for

execution.

Df. A plan is a set of subtasks and subgoals thatform a path from the starting state to

the goal state.

As suggested in Figure 3, the 4D/RCS control loop contains four functional elements:

sensory processing, world modeling, value judgment, and behavior generation.

Df. Functional elements are thqfundamental computational processesfrom which the

system is composed.
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Figure 3. The basic internal structure of a 4D/RCS control loop. Sensory processing performs the

functions of windowing, grouping, computation, estimation, and classification on input from sensors.

World modeling maintains knowledge in the form of images, maps, entities, and events with states,

attributes, and values. Relationships between images, maps, entities, and events are defined by pointers.

These relationships include class membership, ontologies, situations, and inheritance. Value judgment

provides criteria for decision making. Behavior generation is responsible for planning and execution of

behaviors.

3.2 Sensory Processing

Df. Sensory Processing is a set ofprocesses that operate on sensor signals to detect,

measure, and classify entities and events and derive useful information about the

world.

Sensory processing performs the operations of windowing, grouping, computation,

filtering, and classification, or recognition at many different levels. Sensory processing

computes observed features and attributes, and compares them with predictions from internal

models. Correlation between sensed observations and internally generated expectations are used

to detect events and recognize entities and situations. Differences between sensed observations

and internally generated predictions are used to update internal models. Perception results when
the internal world model matches the external world.

Sensory processing accepts signals from sensors that measure properties of the external

world or conditions internal to the system itself. In general, sensors do not directly measure the

state of the world. Sensors only measure phenomena that result from the state of the world.

Signals generated by sensors may be affected by control actions that cause the sensors to move
through the world. Sensor signals are also corrupted by noise. The set of equations that describe

how sensor signals depend on the state of the world, the control action, and sensor noise is called

a measurement model.
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A measurement model is typically of the form

y = H(x, u, r|)

where:

y = signals from sensors

x = state of the world

u = control action

T) = sensor noise

H = a function that relates sensor signals to world state, control action, and noise

A linearized form of the measurement model is typically of the form:

y = Cx + Du + r|

where:

C is a matrix that defines how sensor signals depend on the world state

D is a matrix that defines how sensor signals depend on the control action

3.3 World Modeling

Df. World modeling is a set ofprocesses that construct and maintain a world model

Df. A world model is an internal representation of the world.

World modeling is a process that performs four principal functions:

1. It maintains a knowledge database of images, maps, objects, agents, situations,

relationships, and knowledge of task skills and laws of nature and relationships among them.

2. It maintains a best estimate of the state of the world to be used as the basis for predicting

sensory feedback and planning future actions.

3. It predicts (possibly with several hypotheses) sensory observations based on the estimated

state of the world. Predicted signals can be used by sensory processing to configure filters,

masks, windows, and templates for correlation, model matching, and recursive estimation.

4. It simulates results of possible future plans based on the estimated state of the world and

planned actions. Simulated results are evaluated by the value judgment system in order to

select the best plan for execution.

The world model includes a knowledge database and set of world modeling processes.

The world model includes models of portions of the environment, images, maps, models of

entities, events, and agents, rules, task knowledge, abstract data structures, and pointers that

represent relationships, and a system model that includes the intelligent system itself. The world
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model knowledge database is dynamic, multiresolutional, and distributed over the 4D/RCS
nodes. It is maintained in each node by a local world modeling process.

Df. A system model is a set of differential equations (for a continuous system) or

difference equations (for a discrete system) that predict how a system will respond

to a given input.

A system model is typically of the form

x=ftx,u.^>

where:

x = the state of the system

x = the rate of change in the system state

u = the control action

y = system noise

f = a function that defines how the system state changes over time in response to control

actions

A linearized form of the above system model is of the form

x = Ax + Bu + y

where:

A is a matrix that defines how the system state evolves over time without control action.

B is a matrix that defines how the control action affects the system state.

Df. A knowledge database contains the data structures and the static and dynamic

information that together with world modeling processes form the intelligent

system ’s world model.

The knowledge database has three parts:

(1) immediate experience consisting of iconic representations in the form of current

values of sensor signals, camera images, maps, etc. Immediate experience also consists of

entities, events, pointers, and observed, estimated, and predicted attributes and state

variables.

Df. Iconic knowledge is 2D array data in which the dimensions of the array

correspond to dimensions in an image. The value of each element of the array may
be boolean data or real number data representing a physical attribute such as light

intensity, color, or terrain elevation.

(2) short-term memory consisting of symbolic representations in the form of a list of

entities that are the subject of current attention, pointers that define relationships and class

membership, and queues of recent events at various levels of temporal resolution.
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(3) long-term memory consisting of symbolic representations of all the objects, events,

classes, relationships, and rules that are known to the intelligent system.

3.4 Value Judgment

Df. Value judgment is a process that computes value, determines importance, assesses

reliability, and generates reward and punishment.

Value judgment evaluates perceived and planned situations, thereby enabling behavior

generation to select goals and set priorities. It computes what is important (for attention), and

what is rewarding or punishing (for learning). Value judgment assigns priorities and computes

the level of resources to be allocated to tasks. It assigns values to recognized objects and events,

and computes confidence factors for observed, estimated, and predicted attributes and states.

3.5 Behavior Generation

Df. Behavior generation is planning and control ofactions designed to achieve

behavioral goals.

Df. A behavioral goal is a desired state that a behavior is designed to achieve or

maintain

Behavior generation plans and executes tasks in order to successfully accomplish mission

goals. Behavior generation uses task knowledge, skills, and abilities along with knowledge in

the world model to plan and control appropriate behavior in the pursuit of goals. Behavior

generation accepts task commands with goals and priorities, formulates and/or selects plans, and

controls action. Behavior generation develops or selects plans by using a priori task knowledge

and value judgment functions combined with real-time information provided by world modeling

to find the best assignment of tools and resources to agents, and to find the best schedule of

actions (i.e., the most efficient plan to get from an anticipated starting state to a goal state).

Behavior generation controls action by both feed forward actions and by feedback error

compensation. Goals, feedback, and feed forward signals are combined in a control law.

Df. A control law is a set ofequations that computes control action given predicted

state, desired state, andfeedforward action.

A control law is typically of the form

u = g(uff, xd, x*)

where:

u = control action

uff = feed forward control action (from a plan or inverse model)
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xd = desired world state (from a command)
x* = predicted world state (from the world model)

A linearized form of a control law is

u = uff + G(x* - xd)

where:

G = a matrix that defines the feedback compensation applied to the difference between the

desired and predicted state of the world

In simple cases, feed forward actions can be computed by applying a desired goal to an

inverse model of the system. However, for complex systems, the world model typically has no

inverse, and feed forward actions can only be discovered through planning. Planning typically

involves a heuristic search through the space of possible actions using a world model to predict

the results of those actions. A value judgment process is then invoked to evaluate potential plans

and choose the best plan for execution.

3.6 The RCS_NODE

In the 4D/RCS reference architecture, behavior generation, world modeling, sensory

processing, value judgment, and the knowledge database are organized into RCS_NODEs.

Df. A RCS_NODE is an organizational unit ofa 4D/RCS system that processes

sensory information, computes values, maintains a world model, generates

predictions, formulates plans, and executes tasks.

Figure 4 illustrates the relationships within a single RCS_NODE of the 4D/RCS
architecture. The interconnections between sensory processing, world modeling, and behavior

generation close a reactive feedback control loop between sensory measurements and

commanded action. The interconnections between behavior generation, world modeling, and

value judgment enable deliberative planning and reasoning about future actions. The

interconnections between sensory processing, world modeling, and value judgment enable

knowledge acquisition, situation evaluation, and learning. Within sensory processing, observed

input from sensors and lower level nodes is compared with predictions generated by world

modeling. Differences between observations and predictions is used by world modeling to

update the knowledge database. This can implement recursive estimation processes such as

Kalman filtering. Within behavior generation, goals from higher levels are compared with the

state of the world as estimated in the knowledge database. Behavior generation typically involve

planning and execution functions. Differences between goals and estimated states are used to

generate action. Information in the knowledge database of each node can be exchanged with

peer nodes for purposes of synchronization and information sharing. Any or all of the processes

within a node may communicate with an Operator Interface.
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Figure 4. Internal structure of a RCSJVODE. The functional elements within a

RCS_NODE are behavior generation, sensory processing, world modeling, and value

judgment. These are supported by a knowledge database, and a communication system that

interconnects the functional processes and the knowledge database. Each functional element

in the node may have an operator interface. The connections to the Operator Interface enable a

human operator to input commands, to override or modify system behavior, to perform various

types of teleoperation, to switch control modes (e.g., automatic, teleoperation, single step,

pause), and to observe the values of state variables, images, maps, and entity attributes. The

Operator Interface can also be used for programming, debugging, and maintenance.

A RCS_NODE is analogous to Koestler’s concept of a “holon” [Koestler 67]. Each

RCS_NODE looks upward to a higher level node from which it takes commands, for which it

provides sensory information, and to which it reports status. Each RCS_NODE also looks

downward to one or more lower level nodes to which it issues commands, and from which it

accepts sensory information and status. Each RCS_NODE may also communicate with peer

nodes with which it exchanges information. A RCS_NODE is often abbreviated as a node in this

document.

3.7 An Organization of RCS_NODEs

A collection of RCS_NODES can be used to construct a distributed hierarchical reference

model architecture such as shown in Figure 5. Each node in the 4D/RCS architecture

corresponds to a functional unit in a military command and control hierarchy. Depending on

where the generic node resides in the hierarchy, it might serve as an intelligent controller for an

actuator, a subsystem, a vehicle, a section, a platoon, a company, battalion, or higher level

organizational unit. Each generic node (or a set of processes within a node) might either be

implemented as an intelligent supervised-autonomy controller or be performed by a human or

management unit at any level in the military command and control structure.
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Df. Intelligent supervised-autonomy controllers are controllers capable ofaccepting

commandsfrom human supervisors and executing those commands with little or no

further inputfrom humans in unstructured and often hostile environments.

An intelligent, supervised-autonomy controller is intelligent in that it is capable of

executing its assigned mission with or without direct communication from a human supervisor.

It is supervised in that it responds to commands from superiors with discipline in response to

established rules of engagement as would any well disciplined human soldier. It is autonomous

in that it is capable of formulating plans and coordinating with other intelligent agents in the

execution of mission assignments. Environments in which UGVs with supervised-autonomy

controllers are required to operate include urban warfare zones, rural battlefields, mountains,

woods, farmlands, or desert terrain, as well as all kinds of weather during day or night.
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Figure 5. A 4D/RCS reference model architecture for an individual vehicle. Processing nodes. RCS_NODES,
are organized such that the behavior generation (BG) processes form a command tree. Information in the

knowledge database (KD) is shared between world modeling (WM) processes in nodes above, below, and at the

same level within the same subtree. KD structures are not shown in this figure. On the right, are examples of the

functional characteristics of the behavior generation (BG) processes at each level. On the left, are examples of the

scale of maps generated by the sensory processing (SP) processes and populated by the WM in the KD knowledge

database at each level. Sensory data paths flowing up the hierarchy typically form a graph, not a tree. Value

judgment (VJ) processes are hidden behind WM processes. A control loop may be closed at every node. An
operator interface may provide input to, and obtain output from, processes in every node.

In Figure 5, each node consists of a behavior generation (BG), world modeling (WM),
and sensory processing (SP), and knowledge database (KD) (not shown in Figure 5). Most

nodes also contain a value judgment (VJ) process (hidden behind the WM process in Figure 5).

Each of the nodes can therefore function as an intelligent controller. An operator interface may
access processes in all nodes at all levels.
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Figure 5 illustrates a vehicle system with four subsystems: mobility, communication, and

two mission packages. Each of the four subsystems has one or more mechanisms. Each of the

mechanisms have one or more actuators and sensors. For example, the mobility subsystem may
consist of a navigation and driving controller with several subordinate controllers for steering,

braking, throttle, and gear shift, plus ignition, lights, horn, and turn signals, each of which has

one or more actuators and sensors. The communication subsystem might consist of a message

encoding subsystem, a protocol syntax generator, and communications bus interface, plus

antenna pointing and band selection actuators. The vehicle control system should be able to

incorporate a variety of modular mission packages, each of which may contain a number of

sensors and actuators. For example, a weapons mission package might have loading, aiming,

and firing subsystems each with a number of sensors and actuators. A reconnaissance,

surveillance, and target acquisition (RSTA) mission package might consist of mechanisms that

use cameras, LADARs, FLIRs, radar, and acoustic sensors to detect and track objects, surfaces,

edges and points, and compute trajectories for laser range finders, or pan, tilt, and focus

actuators.

The operator interface (OI) provides the capability for the operator to interact with the

system at any time at a number of different levels - to adjust parameters, to change speed, to

select or verify targets, or to authorize the use of weapons. The OI provides a means to insert

commands, change missions, halt the system, alter priorities, perform identification friend-or-foe

(IFF), or monitor any of the system functions. The OI can send commands or requests to any BG
process, or display information from any SP, WM, or VJ process. It can display any of the state

variables in the KD at a rate and latency dictated by the communications bandwidth. Using the

OI, a human operator can view situational maps with topographic features and both friendly and

enemy forces indicated with overlays. The operator may use the OI to generate graphics images

of motion paths, or display control programs (plans) in advance, or while they are being

executed. The OI may also provide a mechanism to run diagnostic programs in the case of

system malfunctions.

In Figure 5, three levels of control are shown above the node representing the individual

vehicle. These three additional levels represent a surrogate chain of command that, in principle,

exists above the individual vehicle. Because each vehicle is semi-autonomous, it carries a copy

of the control nodes that otherwise would exist in its superiors if those superiors were tightly

coupled in an integrated control structure. Individual vehicles are physically separated, and may
only occasionally be in contact with each other or with their superiors through a low bandwidth

and often unreliable communication channel. It is necessary for each vehicle to carry a surrogate

chain of command that performs the functions of its superiors in the command chain.

The surrogate chain of command serves four functions. First, it provides each vehicle

with an estimate of what its superiors would command it to do if they were in direct

communication. Second, it enables any vehicle to assume the duties of any of its superiors in the

event this should become necessary. Third, it provides a natural interface for human
commanders at the section, platoon, or company level to interface with the vehicle at a level

relevant to the task being addressed. Fourth, it enables each vehicle to dedicate a separate node

to handle each of the higher level tasks. In this example, the surrogate chain of command
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consists of three levels with three different planning horizons (ten minutes, one hour, and five

hours). These three levels deal with external objects and maps at three different scales and

ranges. There, of course, may be more than three levels above the vehicle.

In Figure 5, the horizontal curved lines between WM processes represent the sharing of

state information in the knowledge database between nodes within subtrees in order to

synchronize related tasks. The vertical lines between WM processes represent the sharing of

knowledge required to populate maps and abstract data structures, and to perform recursive

estimation of state variables at various levels in the world model.

The functionality of each level in the 4D/RCS reference model hierarchy is defined by

the functionality, characteristic timing, bandwidth, and algorithms chosen by BG processes for

decomposing tasks and goals at each level. Typically these are design choices that depend on the

dynamics of the processes being controlled. The numbers shown on the right in Figure 5

represent planning horizons appropriate for a vehicle. For other types of systems, different

numerical values would be derived from design parameters. The scale of the maps on the left in

Figure 5 indicates the range of the maps at that level in the world model. The number of pixels

in the maps is typically constant; thus the resolution of the maps decreases at each higher level.

3.8 Hierarchical Levels

The complexity inherent in intelligent systems can be managed through partition into

hierarchical levels. Intelligent systems are inherently complex. Hierarchical leveling is a

common method for organizing complex systems that has been used in many different types of

organizations throughout history for effectiveness and efficiency of command and control. In a

hierarchical control system, higher level nodes have broader scope and longer time horizons with

less concern for detail. Lower level nodes have narrower scope and shorter time horizons with

more focus on detail. At no level does a node have to cope with both broad scope and high level

of detail. This limits the responsibility and load for all the nodes at all levels and enables the

design of systems of arbitrary complexity, without computational overload in any node and any

level.

4D/RCS uses the principle of hierarchical leveling to facilitate software reuse. All the

nodes in the 4D/RCS architecture have many features in common. These include basic read,

write, decision-making, communications, timing, record keeping, and debugging features.

Generic nodes that provide these common features can be used to define organizational units at

all levels. Each specific node can then be customized for its specific functional responsibilities

by embedding level- and node-specific algorithms and knowledge. In the 4D/RCS reference

architecture, behavior generation processes at the upper levels in the hierarchy are customized to

generate long-range strategic plans consisting of major milestones, while lower level behavior

generation processes successively decompose the long-range plans into short-range tactical plans

with detailed activity goals. Sensory processing functions are customized at lower levels to

operate on data over local neighborhoods and short time intervals, while at higher levels they

integrate data over long time intervals and large spatial regions. At low levels, the knowledge

database is filled with short-term, short-range, fine-grained information, while at higher levels it
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is filled with knowledge that is broad in scope and generalized over large regions of space and

time. At every level, feedback loops are closed to provide reactive behavior, with high-

bandwidth fast-response loops at lower levels, and slower more deliberative behavior at higher

levels.

Hierarchical leveling enables optimal use of iconic memory in the representation of time

and space. At each level, state variables, images, and maps are maintained to the resolution in

space and time that is appropriate to that level. At each successively lower level in the hierarchy,

as detail is geometrically increased, the range of computation is geometrically decreased. Also,

as temporal resolution is increased, the span of interest decreases. This produces a ratio that

remains relatively constant throughout the hierarchy. As a result, at each level, behavior

generation functions make plans of roughly the same number of steps. At higher levels, the

space of planning options is larger and world modeling simulations are more complex, but there

is more time available between replanning intervals for planning processes to search for an

acceptable or optimal plan. Thus, hierarchical leveling keeps the amount of computing resources

needed for behavior generation in each node within manageable limits.

Also at each level, entities with a lower level of abstraction are grouped to form entities

with a higher level of abstraction. The effect is to geometrically increase the scope and

encapsulate the detail of entities and events observed in the world. Thus, at each level, sensory

processing functions are responsible for entities that contain roughly the same number of sub-

entities.

At each level, events with a lower level of abstraction are grouped to form events with a

higher level of abstraction along the time line. Thus, short term memory events at lower levels

are much more detailed than short-term memory events at higher levels, but the historical record

in short-term memory at lower levels covers a shorter time frame than short-term memory at

higher levels. Correspondingly, plans at higher levels are longer term and less detailed than

plans at lower levels.

This kind of leveling is typical of the military command and control hierarchy. At the

top, strategic objectives are chosen and priorities defined that influence the selection of goals and

the prioritization of tasks throughout the entire hierarchy. The details of execution are left to

subordinates.

At intermediate levels, tasks with goals and priorities are received from the level above,

and sub tasks with sub goals and attention priorities are output to the level below. In the

intelligent vehicle environment, intermediate level tasks might be of the form: <go to position at

map coordinates x,y>, <advance in formation along line z>, <engage enemy units at time t>, etc.

The details of execution are left to subordinates.

At each level in the 4D/RCS hierarchy, higher-level, more global tasks are decomposed

and focused into concurrent strings of more narrow and finer resolution tasks. The effect of each

hierarchical level is thus to geometrically refine the detail of the task and limit the view of the

world, so as to keep computational loads within limits that can be handled by individual

intelligent agents, such as 4D/RCS nodes or ordinary human beings.
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3.9 Focus of Attention

In 4D/RCS systems, complexity of the real world environment can also be managed

through focusing attention. Intelligent systems must operate in a real world environment that is

rich with detail. The real world environment contains an infinite variety of real objects, such as

the ground, rocks, grass, sand, mud, trees, bushes, buildings, posts, ravines, rivers, roads, enemy
and friendly positions, vehicles, weapons, and people. The background may contain millions of

leaves, twigs, and grains of sand. The environment also contains elements of nature, such as

wind, rain, snow, sunlight, and darkness. All of these objects and elements have states and may
cause, or be part of, events and situations. The environment also contains a practically infinite

regression of detail, and the world itself extends indefinitely far in every direction.

Yet, the computational resources available to any intelligent system are finite. No matter

how fast and powerful computers become, the amount of computational resources that can be

embedded in any practical system will be limited. Therefore, it is imperative that the intelligent

system focus the available computing resources on what is important, and ignore what is

irrelevant. In each situation, the intelligent system should know what it does not know, and

know whether is it important to find out. Of what it does know, it must distinguish the relevant

from the irrelevant. And what is relevant, it must prioritize in order of importance

Fortunately, at any point in time and space, most of the detail in the environment is

irrelevant to the immediate task of the intelligent system. Therefore, the key to building practical

intelligent systems lies in understanding how to focus the available computing resources on what

is important and ignore what is irrelevant.

3.9.1 Knowing What is Important

The problem of distinguishing what is important from what is irrelevant must be

addressed from two perspectives: top down and bottom up.

Top down: what is important is defined by behavioral goals. The intelligent system is

driven by high-level goals and priorities to focus attention on objects specified by the task, using

resources identified by task knowledge as necessary for successfully accomplishing given goals.

Top down goals and high-level perceptions generate expectations of what objects and events

might be encountered during the evolution of the task and which are important to achieving the

goal.

Bottom up: what is important is the unexpected, unexplained, unusual, or out-of-limits.

At each level, sensory processing functions detect errors between what is expected and what is

observed. Error signals are processed at lower levels first. Control laws in lower level behavior

generation processes generate corrective actions designed to correct the errors and bring the

process back to the plan. However, if low level reactive control laws are incapable of correcting

the differences between expectations and observations, errors filter up to higher levels where

plans may be revised and goals restructured. The lower levels are thus the first to compute

attributes of signals or images that indicate problems or emergency conditions, such as limits

being exceeded on position, velocity, acceleration, vibration, pressure, force, current, voltage, or
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temperature. I re lower lev els of control are also the first to act to correct, or compensate for

In either tor down or bottom up. hierarchical leveling provides a mechanism for focusing

the computational resources of the lower levels on particular regions of time and space. Higher

level nodes with dread perspective and long planning horizon determine what is important, while

me lov er levels detect anomalies and arena to details of correcting errors and following plans.

In each node at each level, computing resources are focused on issues relevant to the decisions

that must he made within me scope of control and time horizon of that node.

The region m space and me that is most relevant to the behavioral choices of an

mteldgen: system is me region around me "here and now." .An intelligent system exists at the

center of its own egosphere. Tne relevance of entities and events in the w-orld are usually

inversely proportional to their distance from the origin of this egosphere i.e.. here . The

miemgen: system also exists at the point in time labeled "now-" 'i.e.. t = 0). The relevance of

events is usually inversely propordonal to their time from "now."

3.9.2 Focusing on What is Important

Focusing of attention car be accomplished through masking, windowing, and filtering

rased on object and feature hypotheses and task goals. It can also be accomplished by pointing

high resolution regions of sensors at objects-of-attention. For example in the human eye. the

visual field is sampled at high resolution in the foveal region, and lower resolution in the

perirhery Similarly, tactile sensors are closely spaced to produce high resolution in the

fingertips, lips, and tongae with much lower resolution in other regions of the skin. Tne foveal

area of the eyes and the high resolution tactile sensors regions of the fingers and lips are

behavioral!}
-

positioned so as to apply me maximum number of sensors to objects of attention.

High resolution sensors are scanned over the world to explore the regions of highest interest to

me goals of the task, Tne result is to make the largest possible number of high resolution

measurements of the most important entities and events in the environment and to ignore or

sample at lower resolution those entities and events that are considered unimportant.

Thus, at each level in me -D RC5 sensor.
-

processing hierarchy, attention is used to

mask, filter, and window sensor, data and to focus computational resources on objects and

events that me important to the mission goal. This keeps the computational load of processing

sens try data within manageable limits at ah levels of the hierarchy.

3.10 A Notional 4D "RCS Concept for FCS

To illustrate me r-jpes of issues mat can be addressed using the -D RCS architecture, an

example is gwen below of an eight-level hierarchy for a FCS battalion based on a merger of two

notional concepts. One is the notional FCS Organization Concept developed by the FY2CKX)

Summer 5r_dy for me Arm} Science Board based on a Ft. Knox Mounted Maneuver Battle Lab

experimental force design. [Army 00] Tne second notional concept is the Lead Systems

Integrator etneent expressed in me Boeing Broad Industry Announcement. jBoeing 02] The



specific numbers and functions described in this example are illustrative only. Exact numbers

will be determined by future FCS design studies.

Level 8 - Battalion

A notional FCS battalion might be an organization consisting of a headquarters unit, two

fighting vehicle companies, two infantry vehicle companies, a reconnaissance platoon, a net fires

platoon, and a support company. A computational node at level 8 of the 4D/RCS architecture

corresponds to a battalion headquarters unit housed within two 16 ton (142.3 kN) command,

control, and communications (C3) vehicles that enable C3 on the move for the battalion. The

battalion C3 vehicles each include a driver, a commander, and a 4-soldier workstation.

Incoming orders to the battalion headquarters are decomposed, by staff or on-board

computers according to the FCS configuration at the time, into assignments for each of the

subordinate units within the battalion. Resources and assets are allocated to each subordinate

unit, and a schedule is generated for each unit to maneuver and carry out assigned operations.

Together, these assignments, allocations, and schedules comprise a battalion level plan. The

plan may be devised by the battalion commander alone, or in consultation with his company

commanders. The battalion level planning process may consider the objectives and constraints

of the incoming orders, the best time and place to engage the enemy, the exposure of each unit's

movements to enemy observation, and the traversability of roads and cross-country routes. The

battalion commander typically defines the rules of engagement for the units under his command
and works with his company commanders to develop a schedule that meets the objectives of the

mission orders given to the battalion. In the 4D/RCS battalion node, plans are computed for a

period of about 24 hours (h) and recomputed at least once every 2 h (or more frequently if

necessary).

In the battalion node, the 4D/RCS world modeling process maintains a knowledge

database that contains maps that describe the terrain and location of friendly and enemy forces

(to the extent that they are known), and roads, bridges, towns, and obstacles such as mountains,

rivers, and woods. Overlaid on the maps are icons that represent objects and organizational units

in the environment. These icons have links to symbolic data structures that describe attributes of

objects such as class, size, composition, strength, state of readiness, movement, and estimated

intent. The battalion level knowledge database may be updated from intelligence reports as well

as from sensors on organic ground and air platforms. Maps used for planning typically have a

range of at least 100 km x 100 km (i.e. larger than the typical area of concern to the battalion)

with a resolution of about 30 m, which corresponds to digital terrain elevation data (DTED) level

?

Sensory processing in the battalion HQ node integrates information about the movement
of forces, the level of supplies, and the operational status of all the units in the battalion, plus

intelligence about enemy units in the area of concern to the battalion. This information is used to

update maps and data in the knowledge database so as to keep it accurate and current. The

battalion node also contains value judgment functions that enable the battalion commander to

evaluate the cost, risk, and benefit of various tactical options.

Operator interfaces allow human operators and commanders to visualize information

such as the deployment and movement of forces, the availability of ammunition, and the overall
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situation within the scope of attention of the battalion commander. The commander can

intervene at any time to change priorities, alter tactics, or redirect the allocation of resources.

Output from the battalion level consists of commands to the company level. New commands
typically consist of tasks expected to require about 5 h to complete. These may be issued at any

time. Company commanders attached to the battalion are expected to convey commands to their

respective units, monitor how well their company is following the battalion plan, and make
adjustments as necessary to keep on plan.

Level 7 - Company

A FCS company is a unit typically consisting of three platoons that may include fighting

vehicles, armored personnel carriers, artillery, and logistics. For example, a fighting vehicle

company may consist of two fighter platoons, one infantry platoon, and two mortar vehicles.

Each infantry company consists of two infantry platoons, and one fighter platoon, and two

mortar vehicles. Each support company consists of several resupply vehicles, one or more

recovery vehicles to provide towing and recovery assistance, one or more medical vehicles, and

one or more mobility/counter-mobility vehicles to breach or lay mine fields.

A computational node at level 7 of the 4D/RCS architecture corresponds to a company

headquarters unit housed in two 16 ton C3 vehicles. The company C3 vehicles each consist of a

driver, a commander, and a 4-soldier operator interface workstation. Each company headquarters

unit plans activities and allocates resources for the units attached to the company. Incoming

orders to the company are decomposed by the company headquarters into assignments for the

subordinate units that belong to the company. Resources and assets are allocated to each unit,

and a schedule is generated for each unit to maneuver and carry out assigned operations.

Together, these assignments, allocations, and schedules comprise a company-level plan. The

plan may be devised by the company commander alone, or in consultation with his platoon

leaders. The company level planning process may consider the objectives of the incoming

orders, the best time and place to engage the enemy, the exposure of each unit’s movements to

enemy observation, and the traversability of roads and cross-country routes. The company

commander typically defines the rules of engagement for the units under his command and

works with his unit leaders to develop a schedule that meets the objectives of the orders given to

the company. In the 4D/RCS company node, plans are computed for a period of about 5 h and

recomputed at least once every 30 min (or more frequently if necessary ).

In the company node, the 4D/RCS world modeling process maintains a knowledge database that

contains maps that describe the terrain and location of friendly and enemy forces (to the extent

that they are known), and roads, bridges, towns, and obstacles such as mountains, rivers, and

woods. Overlaid on the maps are icons that point to symbolic data structures that describe

attributes such as strength, state of readiness, movement, and estimated intent. The level

knowledge database may be updated from intelligence reports as well as from sensors on organic

ground and air platforms. Maps used for planning typically have a range of 30 km x 30 km (i.e.

larger than the typical area of concern to the company) with a resolution of about 30 m.

Sensory processing in the company node integrates information about the movement of

forces, the level of supplies, and the operational status of all the units in the company, plus

intelligence about enemy units in the area of concern to the company. This information is used

to update maps and symbolic data structures in the knowledge database so as to keep it accurate
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and current. The company node also contains value judgment functions that enable the company

commander to evaluate the cost, risk, and benefit of various tactical options.

An operator interface allows human operators (either on-site or remotely) to visualize

information such as the deployment and movement of forces, the availability of ammunition, and

the overall situation within the scope of attention of the company commander. The operator can

intervene to change priorities, alter tactics, or redirect the allocation of resources.

Output from the company level consists of input commands to the platoon level. New
commands typically consist of tasks expected to require about 1 h to complete. These may be

issued at any time. Platoon leaders are expected to convey commands to their respective units,

monitor how well their platoon is following the company plan, and make adjustments as

necessary to keep on plan.

Level 6 - Platoon

A FCS platoon attached to a fighting company or infantry company may consist of a

headquarters unit housed in a 16 ton C3 vehicle with a human driver, commander, and a 4 soldier

workstation. The remainder of the platoon consists of six or more vehicles of the following type

in some combination:

• A 16 ton armored personnel carrier with a human driver and commander for transporting

a full 10-man infantry squad and associated equipment

• A 16 ton vehicle with a human driver and commander, armed with a 105 mm to 120 mm
cannon for line of sight and beyond line of sight engagement up to 15 km

• A 16 ton vehicle with a human driver and commander, armed with a non-line of sight

weapon with 120 mm to 155 mm projectiles with 30 km to 40 km range

• A 16 ton vehicle with a human driver and commander, armed with a 120 mm mortar

mounted on a turret for precision-guided mortar munitions

• A 16 ton vehicle with a human driver and commander, armed with a 25 mm to 50 mm
chain gun

• A 6 or 16 ton vehicle with a human driver and commander, armed with a non-lethal

weapons system

• Several 6 or 16 ton semi-autonomous robot mule vehicles

• A number of soldier robots

A RSTA platoon attached to FCS battalion may consist of a headquarters unit housed in a

16 ton C3 vehicle with a driver and a commander. Also in the command vehicle would be a

RSTA suite with a 2 soldier workstation, a 5 meter mast, FLIRs, day/night TV, 10 km laser

range finder, Ka band radar, and 360 degree all elevation pan/tilt. The remainder of the RSTA
platoon would consist of:

• A 16 ton launcher for small AUVs with a pod of 32 small AUVs and launching system

• A 16 ton UGV/UAV control vehicle with a 4 soldier workstation for control of UGVs
and UAVs

• One or more 6 ton armed reconnaissance vehicles with 2 meter masts, RSTA suites, and

Hell Fire missiles or 35 mm chain guns

• Several 1 ton scout vehicles with RSTA suites
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• One or more networks of unattended ground sensors

• Several soldier robots

A Net Fires platoon attached to a FCS battalion may consist of a headquarters unit

housed in a 16 ton C3 vehicle with a driver and commander. Also in the C3 vehicle would be a 4

soldier workstation. The remainder of the Net Fires platoon would consist of four 6 or 16 ton

missile launchers with BLOS precision guided missiles and loitering munitions with 40 km to

150 km range.

A Support platoon attached to a FCS support division may consist of a headquarters unit

housed in a 16 ton C3 vehicle with a human driver, a commander, and a 4 soldier workstation.

The remainder of the platoon consists of:

• One or more resupply vehicles that can be configured as a semi-autonomous leader-

follower vehicles

• One or more recovery vehicles that provides towing and recovery assistance

• One or more semi-autonomous mobility/counter-mobility vehicles to breach and lay

minefields

• Several semi-autonomous mule vehicles

• Several medical vehicles with station for a medical corpsman

• Zero or more bridging vehicles equipped to lay bridges

A 4D/RCS node at the Platoon level corresponds to a platoon headquarters unit. The

platoon commander and section leaders plan activities and allocate resources for the sections in

the platoon. Platoon orders are decomposed into job assignments for each section. Resources

are allocated, and a schedule of activities is generated for each section. Tactical maneuvers are

planned relative to major terrain features and other sections within the platoon. Inter-section

formations are selected on the basis of tactical goals, stealth requirements, and other priorities.

At the platoon level, plans are computed for a period of about 1 h into the future, and replanning

is done about every 5 min, or more often if necessary. Section waypoints about 10 min apart are

computed.

The surrogate platoon node in each vehicle performs the functions of the platoon

headquarters unit when the vehicle is not in direct communication with the chain of command. It

plans activities for the vehicle on a platoon level time scale and estimates what vehicle level

maneuvers should be executed in order to follow that plan. Movements are planned relative to

major terrain features and other vehicles within the platoon.

At the platoon level, the 4D/RCS world model contains maps with a range of about 10

km and resolution of about 30 m that describe the location of objectives and the routing between

them. These maps are overlaid with icons with pointers to a symbolic database that contains

names and attributes of targets, and the weapons and ammunition necessary to attack them.

Sensory processing integrates intelligence about the location and status of friendly and

enemy forces. Value judgment evaluates tactical options for achieving section objectives. An
operator interface allows human operators to visualize the status of operations and the movement
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of vehicles within the section formation. Operators can intervene to change priorities and

reorder the plan of operations.

Output from the platoon level consists of input commands to the section level. New
commands typically consist of tasks expected to require about 10 min to complete. These may
be issued at any time. Section commanders (i.e., platoon level executors) are expected to convey

commands to their respective units, monitor how well their section is following the platoon plan,

and make adjustments as necessary to keep on plan.

Level 5 - Section

A section is a unit that consists of a group of individual scout vehicles such as HMMWVs
and UGVs. A 4D/RCS node at the section level corresponds to a section leader and vehicle

commanders within the section. The section leader assigns duties to the vehicles in his section

and coordinates the scheduling of cooperative activities between vehicles within a section.

Orders are decomposed into assignments for each vehicle, and a schedule is developed for each

vehicle to maneuver within assigned corridors taking advantage of local terrain features and

avoiding obstacles. Plans are developed to conduct coordinated maneuvers and to perform

reconnaissance, surveillance, or target acquisition functions. At the section level, plans are

computed for about 10 min into the future, and replanning is done about every 1 min, or more

often if necessary. Vehicle waypoints about 1 min apart are computed.

At the section level, the 4D/RCS world model symbolic database contains names,

coordinates, and other attributes of other vehicles within the section, other sections, and potential

enemy targets. Maps with a range of about 2 km and a resolution of about 30 m are typical.

Maps at the section level describe the location of vehicles, targets, landmarks, and local terrain

features such as buildings, roads, woods, fields, streams, fences, ponds, etc. Sensory processing

determines the position of landmarks and terrain features, and tracks the motion of groups of

vehicles and targets. Value judgment evaluates plans and computes cost, risk, and payoff of

various alternatives. An operator interface allows human operators to visualize the status of the

battlefield within the scope of the section, or to intervene to change priorities and reorder the

sequence of operations or selection of targets. Vehicle commanders issue commands to their

respective vehicles, monitor how well plans are being followed, and make adjustments as

necessary to keep on plan. Output commands to individual vehicles to engage targets or

maneuver relative to landmarks or other vehicles may be issued at any time, but on average are

planned for tasks that last about 1 min.

Surrogate section, platoon, and battalion nodes in each UGV perform the functions of

higher level command echelons when the UGV is not in direct communication with its chain of

command. Each surrogate node plans activities for the UGV on a time scale commensurate with

planning activities in the respective higher level echelons, and estimates what vehicle level

maneuvers should be executed in order to follow those plans.

Level 4 - Individual Vehicle

The vehicle is a unit that consists of a group of subsystems, such as mobility, attention,

communication, and mission package. A manned scout vehicle may have a driver, vehicle

commander, and a lookout. Thus, a 4D/RCS node at the vehicle level corresponds to a vehicle
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commander plus subsystem planners and executors. The vehicle commander assigns jobs to

subsystems and schedules the activities of all the subsystems within the vehicle. A schedule of

waypoints is developed by the mobility subsystem to avoid obstacles, maintain position relative

to nearby vehicles, and achieve desired vehicle heading and speed along the desired path on

roads or cross-country. A schedule of tracking activities is generated for the attention subsystem

to track obstacles, other vehicles, and targets. A schedule of activities is generated for the

mission package and the communication subsystems. Waypoints and task activities about 5 s

apart out to a planning horizon of 1 min are replanned every 5 s, or more often if necessary.

At the vehicle level, the world model symbolic database contains names (identifiers) and

attributes of objects, such as: the size, shape, and surface characteristics of roads, ground cover,

or objects such as rocks, trees, bushes, mud, and water. Maps are generated from on-board

sensors with a range of about 500 m and resolution of 4 meters. These maps are registered and

overlaid with 30 meter resolution map data from Section level maps. Maps represent object

positions (relative to the vehicle) and dimensions of road surfaces, buildings, trees, craters, and

ditches. Sensory processing measures object dimensions and distances, and computes relative

motion. Value judgment evaluates trajectory planning and sensor dwell time sequences. An
operator interface allows a human operator to visualize the status of operations of the vehicle,

and to intervene to change priorities or steer the vehicle through difficult situations. Subsystem

controller executors sequence commands to subsystems, monitor how well plans are being

followed and modify parameters as necessary to keep on plan. Output commands to subsystems

may be issued at any time, but typically are planned to change only about once every 5 s.

Level 3 - Subsystem Level

Each subsystem node is a unit consisting of a controller for a group of related Primitive

level sub-subsystems. A 4D/RCS node at the Subsystem Level assigns jobs to each of its

Primitive sub-subsystems and coordinates the activities among them. A schedule of Primitive

mobility waypoints and Primitive mobility actions is developed to avoid obstacles. A schedule

of pointing commands is generated for aiming cameras and sensors. A schedule of messages is

generated for communications, and a schedule of actions is developed for operating the mission

package sub-subsystems. The Primitive mobility way points are about 500 ms apart out to a

planning horizon of about 5 s in the future. A new plan is generated about every 500 ms.

At the Subsystem level, the world model symbolic database contains names and attributes

of environmental features such as: road edges, holes, obstacles, ditches, and targets. Vehicle

centered maps with a range of 50 meters and resolution of 40 cm are generated using data from

range sensors. These maps represent the shape and location of terrain features and obstacle

boundaries. Sensory processing computes surface properties such as dimensions, area,

orientation, texture, and motion. Value judgment supports planning of steering and aiming

computations, and evaluates sensor data quality. An operator interface allows a human operator

to visualize the state of the vehicle, or to intervene to change mode or interrupt the sequence of

operations. Subsystem executors compute at a 5 Hz clock rate. They sequence commands to

primitive systems, monitor how well plans are being followed, and modify parameters as

necessary to keep on plan. Output commands to Primitive sub-subsystems may be issued at any

200 ms interval, but typically are planned to change on average about once every 500 ms.
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Level 2 - Primitive Level

Each node at the Primitive level is a unit consisting of a group of controllers that plan and

execute velocities and accelerations to optimize dynamic performance of components such as

steering, braking, acceleration, gear shift, camera pointing, and weapon loading and pointing,

while taking into consideration dynamical interaction between mass, stiffness, force, and time.

Communication messages are encoded into words and strings of symbols. Velocity and

acceleration set points are planned every 50 ms out to a planning horizon of 500 ms.

The world model symbolic database contains names and attributes of state variables and

features such as target trajectories and edges of objects. Maps are generated from camera data.

Five-meter maps have a resolution of about 4 cm. Driving plans can be represented by predicted

tire tracks on the map, and visual attention plans by predicted fixation points in the visual field.

Sensory processing computes linear image features such as occluding edges, boundaries,

and vertices and detects strings of events. Value judgment cost functions support dynamic

trajectory optimization. An operator interface allows a human operator to visualize the state of

each controller, and to intervene to change mode, to override velocities, or to teleoperate the

vehicle. Primitive level executors keep track of how well plans are being followed, and modify

parameters as necessary to keep within tolerance. Primitive executors compute at a 20 Hz clock

rate. Output commands are issued to the Servo level to adjust set points for vehicle steering,

velocity, and acceleration or for pointing sensors or weapons platforms. Output commands are

issued every 50 ms.

Level 1 - Servo Level

Each node at the servo level is a unit consisting of a group of controllers that plan and

execute actuator motions and forces, and generate discrete outputs. Communication message bit

streams are produced. The servo level transforms commands from component to actuator

coordinates and computes motion or torque commands for each actuator. Desired forces,

velocities, and discrete outputs are planned for 5 ms intervals out to a planning horizon of 50 ms.

The world model symbolic database contains values of state variables such as actuator

positions, velocities, and forces, pressure sensor readings, position of switches, and gear shift

settings. Sensory processing detects events and scales and filters data from individual sensors

that measure position, velocity, force, torque, and pressure. Sensory processing also computes

pixel attributes in images such as spatial and temporal gradients, stereo disparity, range, color,

and image flow. An operator interface allows a human operator to visualize the state of the

machine, or to intervene to change mode, set switches, or jog individual actuators. Executors

cause servo actuators and motors to follow planned trajectories. Position, velocity, or force

servoing may be implemented, and in various combinations. Servo executors compute at a 200

Hz clock rate. Motion output commands to power amplifiers specify desired actuator torque or

power every 5 ms. Discrete output commands produce switch closures and activate relays and

solenoids.

The above example illustrates how the 4D/RCS multilevel hierarchical architecture

assigns different responsibilities and duties to various levels of the hierarchy with different range

and resolution in time and space at each level. At each level, sensory data is processed, entities
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are recognized, world model representations are maintained, and tasks are decomposed into

parallel and sequential subtasks, to be performed by cooperating sets of agents. At each level,

feedback from sensors reactively closes a control loop allowing each unit at each level to

respond and react to unexpected events.

At each level, there is a characteristic range and resolution in space and time, a

characteristic bandwidth and response time, and a characteristic planning horizon and level of

detail in plans. The 4D/RCS architecture thus organizes the planning of behavior, the control of

action, and the focusing of computational resources such that RCS_NODEs at each level have a

limited amount of responsibility and a manageable level of complexity.

3.11 4D/RCS for Demo III

There are three ways to visualize a 4D/RCS hierarchy. These are illustrated in Figure 6.

ORGANIZATIONAL
HIERARCHY

COMPUTATIONAL
HIERARCHY

Sensory Value Judgment Behavior

Processing World Modeling Generating

BEHAVIORAL
HIERARCHY

Figure 6. Three views of the 4D/RCS architecture. The organizational hierarchy shows the

RCS_NODES arranged as a hierarchy of organizational units. The computational hierarchy shows the

internal structure of the nodes in single chain of command. The behavioral hierarchy shows the time

history of commands that flow in a chain of command over a period of time.

Figure 7 is a computational hierarchy view of the first five levels in the chain of

command containing the Autonomous Mobility Subsystem in the 4D/RCS architecture

developed for Demo III. On the right of Figure 7, Behavior Generation (consisting of Planner

and Executor) decompose high level mission commands into low level actions. The text inside

the Planner at each level indicates the planning horizon at that level.
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SENSORY
PROCESSING

WORLD MODELING
VALUE JUDGMENT BEHAVIOR GENERATION

FRAMES
Entities, Events

Attributes

States

Relationships

IMAGES
Labeled Regions

Attnbutes

MAPS
Labeled Features

Attributes

Icons

Figure 7. Five levels of the 4D/RCS architecture for Demo HI. On the right are Planner and Executor

modules. In the center are maps for representing terrain features, road, bridges, vehicles, friendly/enemy

positions, and the cost and risk of traversing various regions. On the left are Sensory Processing functions,

symbolic representations of entities and events, and segmented images with labeled regions. The

coordinate transforms in the middle use range information to assign labeled regions in the entity image

hierarchy on the left to locations on planning maps on the right. This causes the entity class hierarchy on

the left to be orthogonal to the BG process hierarchy on the right.
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The Executor at each level executes the plan generated by the Planner. Meanwhile, the

Planner is replanning based on an updated world state. Each planner has a world model simulator

that is appropriate for the problems encountered within the node at its level. The Planners and

Executors operate asynchronously. At each level, the Planner generates a new plan and the

Executor outputs new commands to subordinates on the order of ten times within each planning

horizon. At each lower level, the planning horizons shrink by a factor of about ten. The relative

timing relationships between levels are designed to facilitate control stability and smooth

transitions among hierarchical control levels. The timing numbers in Figure 7 are illustrative

only. The actual rates may differ in different applications.

In the center of Figure 7, each map has a range and resolution that is appropriate for path

planning at its level. At each level, there are symbolic data structures and segmented images

with labeled regions that describe entities, events, and situations that are relevant to decisions

that must be made at that level. On the left is a sensory processing hierarchy that extracts

information from the sensory data stream that is needed to keep the world model knowledge

database current and accurate.

At the bottom of Figure 7 are actuators that act on the world and sensors that measure

phenomena in the world. The Demo III XUVs are designed to accommodate a variety of sensors

that include a LADAR, stereo CCD cameras, stereo FLIRs, a color CCD, vegetation penetrating

radar, GPS (Global Positioning System), an inertial navigation package, actuator feedback

sensors, and a variety of internal sensors for measuring parameters such as engine temperature,

speed, vibration, oil pressure, and fuel level. The XUVs also may carry a Reconnaissance,

Surveillance, and Target Acquisition (RSTA) package that includes long-range cameras and

FLIRs, a laser range finder, and an acoustic package.

In Figure 7, the bottom (Servo) level has no map representation. The Servo level deals

with actuator dynamics and reacts to sensory feedback from actuator sensors. The Primitive

level map has range of 5 m with resolution of 4 cm. This enables the vehicle to make small path

corrections to avoid bumps and ruts during the 500 ms planning horizon of the Primitive level.

The Primitive level also uses accelerometer data to control vehicle dynamics and prevent roll-

over during high speed driving. The Subsystem level map has range of 50 m with resolution of

40 cm. This map is used to plan about 5 s into the future to find a path that avoids obstacles and

provides a smooth and efficient ride. The Vehicle level map has a range of 500 m with

resolution of 4 m. This map is used to plan paths about 1 min into the future taking into account

terrain features such as roads, bushes, gullies, or tree lines. The Section level map has a range of

2 km with resolution of about 30 m. This map is used to plan about 10 min into the future to

accomplish tactical behaviors. Higher level maps (not shown in Figure 7) can be used to plan

platoon, company, and battalion missions lasting about 1 h, 5 h, and 24 h respectively. These are

derived from military maps and intelligence provided by the digital battlefield database.

At all levels, 4D/RCS planners are designed to generate new plans well before current

plans become obsolete. Thus, action always takes place in the context of a recent plan, and

feedback through the executors closes reactive control loops using recently selected control

parameters. To meet the demands of dynamic battlefield environments, the 4D/RCS architecture

specifies that replanning should occur within about one-tenth of the planning horizon at each

level.
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Executors are designed to react to sensory feedback even faster than the replanning

interval. The Executors monitor feedback from the lower levels on every control cycle.

Whenever an Executor senses an error between its output CommandGoal and the predicted state

(status from the subordinate BG Planner) at the GoalTime, it may react by modifying the

commanded action so as to cope with that error. This closes a feedback loop through the

Executor at that level within a specified reaction latency.

3.12 The Inter-Node Interactions within a Hierarchy

Sensory processing and behavior generation are both hierarchical processes, and both are

embedded in the nodes that form the 4D/RCS organizational hierarchy. However, the SP and

BG hierarchies are quite different in nature and are not directly coupled. Behavior generation is

a hierarchy based on the decomposition of tasks and the assignment of tasks to operational units.

Sensory processing is a hierarchy based on the grouping of signals and pixels into entities and

events. In 4D/RCS, the hierarchies of sensory processing and behavior generation are separated

by a hierarchy of world modeling processes. The WM hierarchy provides a buffer between the

SP and BG hierarchies with interfaces to both.

The WM interface with the SP hierarchy is designed to compare observations with

predictions. This requires that WM predictions be at the same level of abstraction and in the

same coordinate frame as SP observations at each level. On the other side, the WM interface

with the BG hierarchy is designed to support task decomposition and planning. This requires

that WM representations be at the same level of range and resolution in space and time, and be in

the same coordinate system as the tasks being decomposed at each level. Figure 7 illustrates

how the world modeling processes can be designed to fulfill both these requirements.

Note that in Figure 7, the left side of the world modeling hierarchy maintains a hierarchy of

entity images that are linked to a hierarchy of symbolic frames. These represent a hierarchy of

entities with increasing degree of aggregation (i.e., pixels, list entities, surface entities, object

entities, etc.) Yet the right side of the world modeling hierarchy maintains a hierarchy of maps
with increasing range and decreasing resolution. It is in the middle of the world modeling

hierarchy that a coordinate transformation process converts from image coordinates to map
coordinates. As a result, entities at any level in the image domain may transform into maps at

any level in the planning domain. For example, an entity near the bottom of an image (short

range) might be transformed into a Primitive level map, whereas another pixel in the same image

near the horizon (long range) might transform into a Vehicle or Section level map. Thus, where

an entity in the image ends up in the map depends not on its level in the SP hierarchy of entities,

but on its distance from the camera. For example, a pixel or list entity in the image may end up

in a Vehicle or Section level map, whereas an object or group entity in the image may end up in

a Primitive or Subsystem level map. This flow of information between levels in the WM is

represented in the 4D/RCS diagram of Figure 4 by the double-headed arrow marked “To Higher

and Lower Level World Modeling” and in Figure 5 by the vertical pathways between WM
processes.
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3.13 Command Vocabularies

A command vocabulary is the set of named actions or tasks that a 4D/RCS behavior

generation (BG) process can perform. Each BG process at each level of the control hierarchy

has its own unique command vocabulary. Examples of the command vocabularies at various

levels of the Demo III hierarchy are:

Section Level Commands

Init

E-stop

Pause/Resume (task T)

Abort

RetroTraverse (to point P)

CooperativeSearch (of area A)

PerformRouteReconnaissance (along route R)

PerformAreaReconnaissance (of area A)

ConductScreen(for unit U)

PerformObstacleRestrictedRecon(over area A)

ReconnoiterBuiltUpArea(area A)

ConductTacticalMovement(to point P)

ConductTacticalRoadMarch(along route R)

EstablishObservationPost(at point P)

Section level commands are expressed in UTM WGS84 world coordinates. Parameters

may include goal positions to be occupied, desired paths to be traversed, required regions to be

observed. Parameters may also include specifications for performance such as speed, time of

completion, required precision, and choice of formation (e.g., line, wedge, vee, and column,

staggered). Mode parameters may include level of aggressiveness, priority, probability of enemy

contact, and acceptable risk or cost. Constraint parameters may specify corridor boundaries and

speed limit. Condition parameters may specify what is required to begin or continue. Typical

intervals between Section level commands are 10 minutes.

Vehicle Level Commands

Init

E-stop

Pause/Resume (task T)

Abort

RetroTraverse(to x, y by t)

Sendlmage(between xl, yl and x2, y2)

ReportStatus

NavigateToGoalPoint(at x, y by t)

PerformRoadMarch(to x, y by t)

OccupyOverwatchPosition(at x, y by t)

OccupyObservation/ListeningPost(at x, y by t)

46



DetectBarriersToMovement(between xl, yl and x2, y2)

ReconnoiterArea(between xl, yl and x2, y2)

ReconnoiterRoute(from xl, yl to x2, y2 by t)

LocateBypassOfArea(between xl, yl and x2, y2)

ReconnoiterTerrain(between xl, yl and x2, y2)

ReconnoiterDefilesOnRoute(from xl, yl to x2, y2 by t)

ReconnoiterLateralRoutesAlongRoute(from xl, yl to x2, y2 by t)

ReconnoiterApproachToRoute(from xl, yl to x2, y2 by t)

IdentifyVehicles&Personnel(between azl and az2)

IdentifyThreatVehicles(between azl and az2)

MoveToMaintainContact(with target)

Hide&MaintainContact(with target)

HideFromEnemy(between bearing 1 and bearing2)

Vehicle level commands are expressed in vehicle-centered. North-oriented, world

coordinates. Parameters typically specify where, when, how fast, and how important the task is.

Typical interval between Vehicle level commands is 50 s.

Autonomous Mobility Subsystem Level Commands

Init

E-stop

Pause/Resume

Abort

RetroTraverse(to position, velocity, heading by t)

TumAround(position, velocity, heading by t)

BackUp(to position, velocity, heading by t)

GoWithinCorridorTo(position, velocity, heading, right boundary, left boundary by t)

GoToRoad(position at velocity or by t)

GoOnRoadTo(position at velocity in lane by t)

GoBesideRoadTo(position at velocity, offset until t)

GoStealthyTo(position, velocity, heading by t)

GoToHillCrest(position, heading by t)

LeaveHillCrest(position, heading by t)

GoToFeature(feature, position, heading by t)

DashTo(position, velocity, heading at t)

Hide(position, heading by t)

HullDown(position, heading)

StopAt(phase line by t)

ScanTreeLine(bearing, elevation, length)

ConductSecurityHalt(position, heading at t)

Subsystem level commands are expressed in vehicle-centered, vehicle-oriented, world

coordinates. Parameters may specify position, velocity, heading, and timing requirements.

Typical interval between Subsystem level commands is 5 s.
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Primitive Level - Primitive Driver Commands

Init

E-stop

Pause/Resume

Abort

GoTo(position, velocity, heading by t)

FollowLeadVehicle(at distance)

Primitive Level - Gaze Commands

Init

E-stop

Pause/Resume

Abort

FixatePoint(at range, bearing, elevation)

TrackObject(at range, bearing, velocity at t)

ScanTrajectory(from range 1, bearingl, elevation 1 to range2, bearing2, elevation2)

Primitive level commands are expressed in vehicle-centered, vehicle-oriented,

coordinates. Typical interval between Primitive level commands is 500 ms.

Servo Level - Drive Commands

Init

E-stop

Pause/Resume

Abort

GoTo(range, bearing, speed, heading by t)

Servo Level - Look Commands

Init

E-stop

Pause/Resume

Abort

GoTo(range, bearing, speed by t)

Servo level commands are expressed in vehicle-centered, vehicle-oriented, coordinates.

The interval between Servo commands is 50 ms.

Actuator Commands

Init

E-stop

Abort
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GoTo(position at t)

GoAt( velocity at t)

ExertForce(amount at t)

Actuator commands are expressed in actuator coordinates. The interval between actuator

commands is 5 ms.

3.14 Command and Plan Structure

In each BG module, commands are decomposed into approximately a ten step plan for

each of its subordinate BG modules. For each plan, an Executor cycles through the plan issuing

commands to the appropriate subordinate BG modules. Commands into each BG module consist

of at least six elements:

(1) ActionCommand (act) describes the action to be performed and may include a set of

modifiers such as priorities, mode, path constraints, acceptable cost, and required conditions.

(2) GoalCommand (gel) describes the desired state (or goal state) to be achieved by the action.

Mobility system's state typically includes the position, heading, velocity, and turning rate of the

system being controlled. The goal may include the name of a target or object that is to be acted

upon. It also may include a set of modifiers such as tolerance.

(3) GoalTime (gtl) defines the timing constraint on achieving the goal plus modifiers such as

tolerance.

(4) NextActionCommand (ac2) describes the planned next action to be performed plus

modifiers.

(5) NextGoalCommand (gc2) describes the planned next goal state to be achieved plus

modifiers.

(6) NextGoalTime (gt2) describes the timing constraint on achieving the next goal plus

modifiers.

If we designate levels in the hierarchy by a superscript and a node index within each level

by a subscript, then input to each behavior generation (BG) process is a command data structure

of the form:

acl J

i
- ActionCommand plus modifiers for BG module i at level j

gcl J

;
= GoalCommand state plus modifiers for BG module i at level j

gt 1
J

;
= GoalTime plus modifiers for when gcl J

i should be achieved

ac2J

j
= NextActionCommanded plus modifiers for BG module i at level j

gc2J

i
= NextGoalCommand state plus modifiers for BG module i at level j

gt2J

;
= NextGoalTime plus modifiers for when gc2J

i should be achieved
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Figure 8 shows the command and plan structure for the first five levels of a Demo ID XUV.
Note that plans exist concurrently at all levels, and the data structures containing the plans form

buffers between the planners and executors. This allows planners and executors to run

asynchronously, and planners can be constantly replanning at all levels simultaneously and

independently from execution.

TASK COMMAND

Figure 8. The command and plan structure for Demo III. Note that the plan for each BG module is

generated by, and resides in, the BG module above it. For example, the AM Plan for the Autonomous

Mobility BG is generated by the Vehicle level planner. The AM plan resides in the Vehicle level BG
module and is transformed into commands for the Autonomous Mobility BG by the Vehicle level AM
Executor.
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Section (level 5)

Commands to Section level BG processes have the form:

Section 1 Command Structure

ActionCommand = acl
5

s
GoalCommand = gel

5

,
GoalTime = gtl\ ~ t + 10 min

NextActionCommand = ac2
5

!
NextGoalCommand = gc2

5

j
NextGoalTime = gt2'\ = t + 20 min

where ~ means equals approximately

The planner in each section level BG process decomposes commands into plans for each

of its vehicle BG processes. Each subordinate plan is designed to have about ten steps. For

example, a section with two vehicles would have a plan for two vehicles of the form:

Vehiclel Plan

apl
4
b gpl

4
j, gtl

4
,

ap2
4
,, gp2

4
b gt2

4
!

ap3
4
i, gp3

4
,, gt3

4
!

ap4
4
,, gp4

4
,, gt4

4
,

ap5
4
i, gp5

4
i, gt5

4
,

ap6
4
,, gp6

4
,, gt6

4
,

ap7
4
,, gp7

4
i, gt7

4
j

ap8
4
b gp8

4
b gt8

4
j

ap9
4
b gp9

4
,, gt9

4
,

apl0
4
j, gplO

4
!, gtlO

4
!

Vehicle2 Plan Typical Goal Times

apl
4
2 ,
gpl

4
2,gtl

4
2 gtl

4 ~ t+1 min

ap2
4
2 , gp2

4
2,gt2

4
2 gt2

4 ~
t+2 min

ap3
4
2 , gp3

4
2,gt3

4
2 gt3

4 ~ t+3 min

ap4
4
2 , gp4

4

2 ,gt4
4
2 gt4

4 ~ t+4 min

ap5
4
2 , gp5

4
2,gt5

4
2 gt5

4
j

~ t+5 min

ap6
4
2 , gp6

4
2,gt6

4
2 gt6

4 ~ t+6 min

ap7
4
2 , gp7

4
2,gt7

4
2 gt7

4 ~ t+7 min

ap8
4
2 , gp8

4
2 ,gt8

4
2 gt8

4 ~ t+8 min

ap9
4
2 , gp9

4
2,gt9

4
2

apl 0
4
2 , gpl 0

4
2,gtl0

4
2

gt9
4 ~ t+9 min

gtlO
4 ~ t+10 min

Where:

apkJ

j
= action planned for BG module i at level j for plan step k

gpkJ

j
= goal planned for BG module i at level j for plan step k

gtkJ

i = goal time planned for BG module i at level j for plan step k

t = time at which the command is scheduled to begin

The GoalTimes shown here illustrate only an approximation, an order of magnitude.

Plan steps need not be equally spaced in time or space. There also might be more or fewer than

ten steps in a plan.

Vehicle (level 4)

Commands to Vehicle level BG processes would have the form:

Vehiclel Command Structure

ActionCommand = acl
4

i GoalCommand =gcl
4

!
GoalTime = gtl

4
]
~ t + 1 min

NextActionCommand = ac2
4

]
NextGoalCommand = gc2

4
! NextGoalTime = gt2

4
i

~ t + 2 min

A vehicle with three subsystems would have a plan for each subsystem of the form:

Autonomous Mobility Plan RSTA Plan Communications Plan Goal Times
apl\, gpl\, gtl\ apl

3
2,
gpl

3

2 ,
gtl

3

2 apl
3

3 , gpl
3

3 ,
gtl

3

3 gtl\~t+5sec
ap2

3

i, gp2
3

i, gt2\ ap2
3

2 , gp2
3

2 , gt2
3

2 ap2
3

3 , gp2
3

3 , gt2
3

3 gt2
3

;
~ t+10 sec
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ap3\, gp3\, gt3
3

2

ap4
3

2 , gp4
3

2 , gt4
3

2

ap5
3

2 , gp5
3

2, gt5
3

2

ap6\, gp6
3

2 ,
gt6

3

2

ap7
3

2 , gp7
3

2 ,
gt7

3

2

ap8 \, gp8
3

2 ,
gt8

?

2

ap9
3

2 , gp9
3

2 ,
gt9

3

2

apl0
3

2 ,
gpl0

3

2 ,
gtl0

3

2

Subsystem (level 3)

ap3
3

3 • gp3
3

3 gt3
3

3 gt3-\ = t+15 sec

ap4
3

, •
gp4'\ gt4

3

3 gt4
3

;
~ t+20 sec

ap5
3

3 . gp5
3

3 gt5
3

3 gt5
3

i~ t+25 sec

ap6
3

3 . gp6
3

3 gt6
3

3 gt6
3

i~ t+30 sec

ap7
3

3 - gp7
3

3 • gt7
3

3 gt7
3

i
= t+35 sec

ap8
3

3 - gp8
3

3 gt8
3

3 gt8
3j~ t+40 sec

ap9
3

3 • gp9
3

3 gt9
3

3 gt9
3
j
~ t+50 sec

aplO 3 ,
gplO 3 ,

gtl0- 3 gtio
3

,
~ t+60 sec

ap3\, gp3
3

b gt3
3

!

ap4
3

!, gp4
3

j, gt4
3

!

ap5\, gp5\, gt5
3

,

ap6
3

!, gp6\, gt6
3

!

ap7
3

,, gp7
3

j, gt7
3

,

ap8
3

!, gp8
3

b gt8\

ap9
3

i, gp9
3

b gt9\

aplO
3

,, gplO
3

], gt 1

0

3

!

Commands to Subsystem level BG processes would have the form:

Autonomous Mobility Command Structure

ActionCommand = act
3

!
GoalCommand =gcl\ GoalTime = gt 1

3

i
~ t + 5 sec

NextActionCommand = ac2'\ NextGoalCommand = gc2'\ NextGoalTime = gt2
3

!
= t + 10 sec

A mobility subsystem with Primitive level Driver and Gaze unit controllers would have

the form:

Driver Plan Gaze Plan Typical Goal Times

apT >gpP ,gtl
2
i

ap 1
'
2 , gPl

2

2 , gtl
2
2 gtl" ~ t+0.5 sec

ap2
2

>gp2
2

• gt2
2

!
ap2

'

2 , gp2
2

2 . gt2
2

2 gt2
2 ~ t+ 1.0 sec

ap3
2

’ gP^
3

*
gt3

2
. ap3“2 , gP3

;
2 , gt3

2

2 g13
:
~ t+1.5 sec

ap4
2

» gp4
2

,
gt4

2

i
ap4'2 , gp4

2

2, gt4
2

2 gt4" ~ t+2.0 sec

ap5
2

<gp5
2

gt5
2

! ap5'2 . gp5> gt5
2

2 gt5
2 ~ t+2.5 sec

ap6
2

, gp6
2

.
gt6

2

i ap6
”

2 , gp6
2

2 . gt6
2

2 gt6
" ~ t+3.0 sec

ap7
2

* gp7
2

, gt7
2

! ap7
2

2 . gp7
2

2, gt7
2

2 gt7
2 ~ t+3.5 sec

ap8
2

• gp8
"
,gt8

2

! ap8
"

2 . gp8
;
2 , gt8

2

2 gt8
2 ~ t+4.0 sec

ap9
2

’ gp9
2

j .
gt9

2

i ap9~2 . gp9
2
2, gt9

2

2 gt9
2 ~ t+4.5 sec

aplO i, gplO j, gtlOT aplO
2

2 ,
gplO

2

2 ,
gtl0

2

2 gtlOy ~ t+5.1D sec

Primitive (level 2)

Commands to Primitive level BG processes would have the form:

Driver Command Structure

ActionCommand = acl'i GoalCommand = gel T GoalTime = gtlT = t + 0.5 sec

NextActionCommand = ac2
2

)
NextGoalCommand = gc2

2

]
NextGoalTime = gt 1

2

]
~ t + 1.0 sec

Primitive level plans for the Servo level BG units would have the form:

Velocity Plan

ap 1

1

1 , gpl'i, gtl\

ap2
1

1 , gp2
i

1 , gt2
1

1

ap3‘i, gp3‘i, gt3\

ap4
l

1,gp4
1

1
,gt4

1

1

ap5'i, gp5
* 1? gt5

!

!

ap6 '!, gp6
1

! ,
gt6

1

\

ap7
1

1 , gp7'i, gt7S

ap8 \, gp8 ‘i, gt8\

Goal Times
gtl

1

;
= t+50 ms

gt2 'i
= t+ 1 00 ms

gt3
1

;

= t+ 1 50 ms

gt4'i = t+200 ms

gt5*i = t+250 ms
gt6 ‘, = t+300 ms

gt7'i = t+350 ms
gt8 \ = t+400 ms
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ap9
1

1 , gp9
1

! ,
gt9

1

1
gt9'i = t+450 ms

aplO'i, gplO\, gtlO
1

!
gtlO‘i = t+500 ms

Note that time intervals in plans become uniform at the Primitive level and below.

Servo (level 1

)

Commands to Servo level BG controllers would have the form:

Velocity Command Structure

ActionCommand = ac 1
1

1
GoalCommand = gc 1

1

1
GoalTime = gt 1

1

\
= t + 50 ms

NextActionCommand = ac2‘i NextGoalCommand =gc2 1

]
NextGoalTime = gt2

1

1
= t+ 100 ms

Servo level plans for each Actuator would have the form:

Wheel Motors
apl

0
b gpl

0
b gtl°i

ap2°
1 ,
gp2°

1 , gt2°]

ap3°i, gp3°i ,
gt3°!

ap4°!, gp4°
1 , gt4

0
i

ap5°i, gp5°], gt5°i

ap6°], gp6
0
b gt6°!

ap7
0
,, gp7

0
,, gt7°,

ap8
0
b gp8

0
,, gt8°!

ap9°i, gp9
0
!. gt9°i

aplOY gpl0°i, gtl0°
(

Front Steer Motor
apl°2 ,

gpl°2, gtl°:

ap2°2 ,
gp2°2 ,

gt2°2

ap3°2 ,
gp3°2 ,

gt3°2

ap4°2 ,
gp4°2 ,

gt4°2

ap5°2 ,
gp5°2 ,

gt5°2

ap6°2 ,
gp6°2 ,

gt6
0
^

ap7°2 ,
gp7°2 ,

gt7°2

ap8°2 ,
gp8°2 ,

gt8°2

ap9°2 , gp9°2, gt9°2

apl0°2 , gpl0°2 ,
gtl0°2

Rear Steer Motor
apl°3, gpl°3, gtl°3

ap2°3 , gp2°3, gt2°3

ap3°3 ,
gp3°3 ,

gt3°3

ap4°3 ,
gp4°3 , gt4°3

ap5°3 , gp5°3, gt5°3

ap6°3 ,
gp6°3 ,

gt6°,

ap7°3 , gp7°3, gt7°3

ap8°3 ,
gp8°3 ,

gt8
0
,

ap9° 3 ,
gp9°3 , gt9°3

apl0°3 ,
gpl0°3 , gtl0°3

Goal Times
gtl

0
j

= t+5 ms

gt2°i = t+ 1 0 ms

gt3°i = t+15 ms
gt4°j = t+20 ms
gt5°, = t+25 ms

gt6°i = t+30 ms
gt7°j = t+35 ms

gt8°i = t+40 ms
gt9°, = t+45 ms

gtl0°i = t+50 ms

Actuators (level 0)

Commands to Actuators would have the form:

Actuator i

ActionCommand°i = acl
0

;
GoalCommand = gcl°i GoalTime = gtl

0
;
= t + 5 ms

Where:

acl
0

i
= apl°i+ kfb(gcl°i - xl*°j)

xl*
0

; = predicted state of i-th actuator at next sample

gcl°,= gpl°i

kfb = feedback gain

Example Data Structures

An example of a C++ class data structure for a command from the Vehicle level to the

Subsystem Autonomous Mobility level might be:
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class GO_TO_HILL_CREST_CMD
:
public RCS_CMD_MSG

{

public:

GO_TO_HILL_CREST_CMD(); // Constructor

void update(CMS *); // update function.

// action modifiers

int stealthiness; // 1 to 100% stealthy

double speedLimit; // in meters/sec

// GoalCommand
double x_goal;

double y_goal;

char speedAtGoal;

double headingAtGoal;

// desired x position on a map about 50 meters away

// desired y position on a map about 50 meters away

// desired speed in m/s at GoalCommand (0 if stop at goal)

// desired heading at GoalCommand

// goal modifiers

double timeToGetToGoal;

double timeTolerance;

double goalTolerance;

// ~ 5 seconds for a vehicle level command
// ± seconds

// close enough radius to goal

An example of a status message from the Autonomous Mobility Subsystem level Planner to the

Vehicle level Executor might be:

I g feedback

class AM_VEHICLE-STATUS : public RCS_STAT_MSG
{

public:

AMJVEHICLE-STATUS (); // Constructor

void update(CMS *); // update function.

boolean ExitlfPastGoal; // task done flag

// predicted state yd* at command GoalTime = gtl \
double x_predictedAtGoalTime;

double y_predictedAtGoalTime;

double speed_predictedAtGoalTime;

double heading_predictedAtGoalTime;

// estimated time to reach GoalCommand
double estimatedTimeToGoal;

// predicted state at planning horizon (i.e., at last subgoal ydlO
2

])

double x_predictedAtPlanHorizon;

double y_predictedAtPlanHorizon;

double speed_predictedAtPlanHorizon;

double heading_predictedAtPlanHorizon;
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3.15 Replanning

Multiple levels of deliberative planning make it possible for plans to be recomputed

frequently enough that they never become obsolete. Planners generate new plans well before

current plans are fully executed. Typically, replanning is completed by the time the first subgoal

is achieved in the current plan (e.g., replanning at level 3 occurs about every 500 milliseconds).

Executors react to sensory feedback even faster
5
(e.g., reaction at level 3 occurs within 100

milliseconds.)

To achieve this rate of replanning, it is necessary to limit the amount of data in the world

model that needs to be refreshed between each planning cycle. Multilevel representation of

space limits the number of resolution elements required in maps and the amount of detail in

symbolic data structures at each level. Multilevel representation of time limits the number of

events and temporal detail required at each level. The world model in any node is rich and

detailed within the region of attention, but contains only the amount of resolution in space and

time required for making decisions in that node. This enables the world model in each node to

be updated in real-time.

To replan frequently, it is also necessary to limit the amount of search required to

generate new plans. There are several ways to limit the search. One is to pre-compute and store

plans that can be selected by a rule-based planner in response to the recognition of an object,

event, or situation. A second approach is to limit the range and resolution of the state space that

needs to be searched and evaluated. At each level, the range and resolution of maps can be

limited to less than 64,000 resolution elements.

The 4D/RCS architecture has an interface between deliberative and reactive execution in

every node at every hierarchical level. This enables 4D/RCS to fully realize the desirable traits

of both deliberative and reactive control in a practical system. Multiple levels of deliberative

planning ensure that plans can be recomputed frequently enough that they never become

obsolete. Multiple levels of representation cause the planning search space to be limited in range

and resolution, and the plans to be limited in the number of steps and amount of detail. Multiple

levels of feedback from the environment ensure that reactive behavior can be generated with a

minimum of feedback time delay. Table 1 contains suggested 4D/RCS specifications for the

planning horizon, replanning interval, and reaction latency at all eight levels:

Level Planning horizon Replan interval Reaction latency

1 Servo 50 ms 50 ms 5 ms
2 Primitive 500 ms 50 ms 50 ms
3 Subsystem 5 s 500 ms 200 ms
4 Vehicle 50 s 5 s 500 ms
5 Section 10 min 50 s 2 s

6 Platoon 1 h 5 min 5 s

7 Company 5 h 30 min 10 s

8 Battalion 24 h 2 h 20 s

Table 1 . The Planning Horizon, Replan Interval, and Executor Reaction Latency at each level of

the 4D/RCS hierarchy

5
Except at level where replanning and reaction times are the same. At levels 2 and above, the difference between

replanning and reacting becomes more significant with each successively higher level.
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The planning horizon refers to the future point in time to which each level plans. Plans at

each level typically have 5 to 10 steps between the anticipated starting state and a planned goal

state at the planning horizon. Thus, the planning horizon typically grows about one order of

magnitude longer at each successively higher level.

Reaction latency is the minimum delay through the reactive feedback loop at each level.

Reaction can interrupt cyclic replanning to immediately select an emergency plan, and to begin a

new replanning cycle based on new information. Reaction latencies at each level are determined

by computational delays in updating the world model as well as the sampling frequency and

computation cycle rate of the Executors. The fastest servo update rate on a typical vehicle

controller is 200 Hz. Thus, the reaction latency at the Servo level is 5 ms. The required

execution cycle rate at other levels depends on the dynamics of the mechanism being controlled

and the speed of the available computers.

3.16 Two Kinds of Plans

There are two kinds of plans that are required by the FCS vehicles: (1) path plans for

mobility, and (2) task plans for tactical behaviors. A typical path plan consists of a series of

waypoints on a map. A typical task plan consists of a set of instructions or rules that describes a

sequence of actions and subgoals required to complete the task. Both path plans and task plans

can be represented in the form of augmented state graphs, or state tables, which define a series of

planned actions (subtasks) with a desired state (subgoal) to be achieved by each action in the

plan. Typically states are represented by nodes, and actions are represented by arcs that connect

the nodes. Both types of plans can be executed by the same executor mechanism.

In principle, both types of planning can be performed by searching the space of possible

futures to find a desirable solution. However, path planning typically requires searching only a

two-dimensional space on a map. Task planning requires searching an N-dimensional space of

all possible states and actions. Searching high dimensional spaces can be accomplished by

evolutionary algorithms [Fogel99] or reinforcement learning techniques. [Sutton and Barto98]

However, these methods are typically too slow for real-time use at levels where plans must be

recomputed faster than once every few minutes. Therefore, real-time task planning is typically

done by searching a library of schema or recipes that have been developed off-line and stored

where they can be accessed by rules or case statements when conditions arise. When there are

more than one recipe or schema that are appropriate to a task, each may be submitted to the

world model for simulation and the predicted results evaluated by the value judgment process.

The plan selector then selects the best recipe or schema for execution.

In 4D/RCS, path planners use cost maps that represent the estimated cost or risk of being

in, or traversing, regions on the map. Values represented in cost maps depend on mission

priorities and knowledge of the tactical situation represented in the KD. Path planners search the

cost maps for routes that have the lowest cost under a given situation. Task planners use rules of

engagement, military doctrine, and case-based reasoning to select modes of operation and
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schema for tactical behaviors. State variables such as mission priorities and situational

awareness determine cost functions and hence decisions regarding which type of behavior to

select.

For example, if enemy contact is likely or has occurred, cost maps of open regions and

roads will carry a high cost. Regions near tree lines and under tree cover will have lower cost as

long as they are cleared of enemy threats. In this case, path planners will plan cautious routes

near tree lines or through wooded areas, and task planners will plan behaviors designed to search

for evidence of enemy activity in likely places. However, if enemy contact is unlikely, roads

will have a very low cost and open regions will carry a lower cost than wooded areas. This will

cause path planners to plan higher speed routes on the road or through open regions, and task

planners to focus on issues such as avoiding local traffic. Thus, a very small amount of

information, such as knowledge that enemy contact is likely or unlikely, can completely change

the tactical behavior of the vehicle in a very logical, intuitive, and meaningful way.

For the Demo HI program, the range and resolution of maps is limited to about 1 28

resolution elements from the center of the map in each direction at each level. This means that

each map contains about 256x256 (~ 64,000 pixels). The suggested range and resolution of

maps at all levels of the FCS 4D/RCS hierarchy are shown in Table 2. Maps at each level

provide information to planners about the position, attributes, and class of entities. For example,

maps at various levels may indicate the shape, size, class, and motion of objects such as

obstacles and vehicles, and the location of roads, intersections, bridges, streams, woods, lakes,

buildings, and towns.

Level Man Resolution Mao Range Function Performed

1 Servo n/a n/a Actuator servo

2 Primitive 4 cm 5 m Vehicle heading, speed

3 Subsystem 40 cm 50 m Obstacle avoidance

4 Vehicle 4 m 500 m Single vehicle tactical behaviors

5 Section 30 m 2km Section level tactical behaviors

6 Platoon 30 m 10 km Platoon level tactical behaviors

7 Company 30 m 30 km Company level tactical behaviors

8 Battalion 30 m 100 km Battalion level tactical behaviors

Table 2. Range and resolution of maps at all levels in the proposed FCS 4D/RCS
architecture. Range is measured from the vehicle at the center of each map.

In general, map range and resolution depend on velocity and the planning time horizon.

For any given planning time horizon, the map range must be sufficient to guarantee that the plan

will fit on the map. For different vehicle speeds, the map resolution required for planning at

various levels will be different. The numbers in Table 2 are for ground vehicles traveling about

10 m/s. A helicopter skimming over the ground at 100 m/s would require planning maps with an

order of magnitude greater range and an order of magnitude lower resolution than that shown

above. For systems with widely varying velocities, map range and resolution may need to be

velocity dependent.
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4.0 ENGINEERING GUIDELINES

The remainder of this document describes engineering guidelines for building systems

based on the 4D/RCS reference model architecture. At this point we will drop one layer deeper

into the 4D/RCS methodology and suggest a specific approach to designing a set of software

modules that can implement the functions of planning, control, reflex response, reasoning, world

modeling, simulation, visualization, recursive estimation, grouping, computation of attributes,

classification, and establishment of relationships.

In this section, we will discuss a method that could be used to implement the BG, WM,
SP, and VJ processes. And we will outline a set of algorithmic approaches that could be used to

build practical systems that conform to the 4D/RCS reference model in a comprehensive manner.

We do not pretend that these guidelines describe the only possible method for implementing

4D/RCS systems, or even that they represent the best possible design. Rather, these engineering

guidelines are offered:

First, to demonstrate that at least one possible approach exists to implement the 4D/RCS
reference model; and

Second, to clarify the engineering issues that must be addressed if attempts to build

intelligent machines that approach human levels of performance in responsiveness, dexterity,

adaptability, reliability, and cognitive understanding are to be successful.

A number of practitioners have applied these and other methods that focus on particular

aspects of the 4D/RCS architecture. A.J. Barbera and M.L Fitzgerald have applied a task

decomposition based RCS approach to many industrial automatic systems [ATR 02]. Kevin

Passino and colleagues describe an implementation method based on a RCS software library

[Gazi et al. 01]. Huang and colleagues have investigated the combination of the object-oriented

software engineering paradigm and the task based RCS methods [Huang et al. 00 and Huang and

Messina 96], Messina, Horst and colleagues have investigated a component based method

[Horst 00 and Messina 99]. Evans, Messina and colleagues focus on knowledge engineering

[Evans et al. 02].

We begin our discussion of engineering guidelines with the process of behavior

generation.

4.1 Behavior Generation

A BG process resides within RCS_NODE that represents an operational unit in an

organizational hierarchy. The BG process accepts tasks and plans and executes behavior

designed to accomplish those tasks. The internal structure of the BG process consists of a

planner and a set of executors (EX) as shown in Figure 9. At the upper right, task commands

from a supervisor are input to a BG process. A planner module decomposes each task into a set

of coordinated plans for subordinate BG processes. This is accomplished by the following

search process:
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While the planning period is open

{

1 ) the BG planner hypothesizes a tentative_plan;

2) the WM predicts the probable_result of the tentative_plan;

3) the VJ evaluates the probable_result_value;

4) a plan selector within the BG planner checks to see if the probable_result_value is greater

than the previous probable_result_value of the plan already in the cuirent_best_plan_buffer,

{

if it is, then the tentative_plan replaces the current plan in the current_best_plan_buffer;

else continue;

}

};

On the next execution clock cycle,

1 ) Move the contents of the current_best_plan_buffer into the executor_plan_buffers;

2) Begin replanning immediately, or wait until the next planning cycle triggers;

Sensory Task

Output Command

Figure 9. A typical 4D/RCS computational node, RCS_NODE. Task command inputs come from a

higher level behavior generation (BG) process in the 4D/RCS hierarchy. Each input task command is

decomposed into a plan consisting of subtasks for subordinate BG processes. A world modeling (WM)
process maintains a knowledge database (KD) that is the BG unit’s best estimate of the external world. A
sensory processing (SP) system operates on input from sensors by focusing attention (i.e., windowing),

grouping, computing attributes, filtering, and recognizing entities, events, and situations. A value judgment

(VJ) process evaluates expected results of tentative plans. A VJ process also evaluates entities, events, and

situations entered into the KD.
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The executor_plan_biiffer forms an interface between the planner and executor processes. This

is a critical interface between the deliberative and reactive processes in the intelligent controller.

The executor_plan_buffer enables the planning process to run asynchronously and at a different

rate from the execution cycle of the reactive control loop. As plans are developed, they are

loaded into the executor_plan_buffers. The planner is free to run on its own so long at the

executor_plan_buffers are kept supplied with a current_best_plan. In the 4D/RCS architecture

this interface between planners and executors exists at every level in the computational

hierarchy. Thus, the interface between deliberative and reactive processes is not localized to a

particular level, but is distributed throughout the 4D/RCS architecture

An executor services each subordinate BG unit, issuing subtask commands, monitoring progress,

compensating for errors and differences between planned and observed situations in the world,

and reacting quickly to emergency conditions with reflexive actions. The Executors use

feedback via a real-time knowledge database KD to generate reactive behavior. Predictive

capabilities in the WM can enable preemptive behavior.

SP and WM processes interact to support windowing, grouping, recursive estimation, and

classification. WM updates the KD with images, maps, entities, events, attributes, and states.

These enable deliberative, reactive, and preemptive behavior. Coordination between subordinate

BG processes is achieved by cross-coupling among plans and sharing of information among
Executors via the KD. The planner in Figure 9 can be further decomposed into three

subprocesses:

1. A Job Assignor (JA)

2. A set of Schedulers (SC)

3. A Plan Selector (PS)

as shown in Figure 10. The JA subprocess acts as a supervisor of the BG unit. Each pair of SC
and EX subprocesses act as peer subordinate agents within the BG unit. The JA supervisor

subprocess interacts with the SC subprocesses to make plans that the respective EX subprocesses

execute. Plans consist of planned actions and desired results. Each EX subprocess merges its

plan with feedback from the world model to generate plan-driven reactive behavior. Each EX
sends commands to, and monitors the status of, its respective subordinate BG unit.

The set of subprocesses JA, SC, EX can be grouped in two ways: 1) as organizational

units, or 2) as agents. An organizational unit grouping consists of a JA subprocess as supervisor

of the BG unit, with SC/EX pairs as staff officers within the unit. An agent grouping consists of

SC/EX/JA triplets working together as agents, where each agent is a subordinate in the higher

level unit, and supervises a lower level unit.

The set of intelligent agents that interact within the BG process may correspond to a team of

persons interacting within an organizational unit or a set of coordinated processes interacting

within an intelligent control system.
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Figure 10. Internal structure of Behavior Generation (BG) processes at two levels with three agents at

each level.

Df. The Job Assignor (JA) is a subprocess ofBG that decomposes input tasks into job

assignmentsfor each agent within the BG process.

The Job Assignor (JA) performs four functions:

1) JA accepts input task commands from an Executor in a higher level BG process.

Task commands typically involve at least two steps in the current higher level

plan.
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2) JA decomposes the commanded input task into a set of jobs that are assigned to

agents within the BG process
6

.

3) JA transforms each job assignment into a coordinate frame of reference which is

appropriate for the performing agent.

4) JA allocates resources to the agents to enable them to accomplish their assigned

jobs.

The JA subprocess functions as the supervisor of the peer agents (each of which consists

of a scheduler, executor, and job assignor of the next lower level) within the BG operational unit.

Df. The Scheduler (SC) is a subprocess within BG that accepts a job assignment and

computes a schedule for the EX subprocess with which it is paired.

There is a SC subprocess for each EX subprocess within the BG process. Each SC
accepts a job assignment from the JA. Each SC computes a sequence of activities that

accomplishes the assigned job. The set of SC subprocesses within the BG process may need to

communicate with each other to coordinate their sequences of planned actions and subgoals for

their respective EX subprocesses in the same BG process, or even possibly with EX
subprocesses in other BG processes. A SC subprocesses may negotiate with the JA subprocess

or with its peer SC subprocesses regarding shared resources, to resolve conflicts and optimize

coordination of actions among cooperating EX subprocesses.

Within the 4D/RCS methodology, a system designer can implement different

management styles by different distribution of duties and responsibilities to the JA and SC
subprocesses within a BG process. For example, an autocratic or micro-management style can

be achieved by giving both job assignment and most scheduling responsibilities to the JA
subprocess of the supervisor agent, leaving very little discretion to the SC subprocesses of the

subordinate agents. On the other hand, a market negotiation management style can be achieved

by giving the JA subprocess only general oversight responsibilities and allowing the subordinate

SCs to negotiate among themselves for job assignments and resources. This gives responsibility

to the subordinates for scheduling their own activities. In either case, the JA and SC
subprocesses together have responsibility for producing a plan that can be followed by the EX
subprocesses to accomplish the commanded task.

The subprocess that is responsible for selecting the tentative plan with the best evaluation

is the Plan Selector.

6
At the vehicle level and below, the assignment of jobs and resources to agents may be fixed by the system design.

At higher levels, the JA subprocess may need to take into consideration the reconfiguration of the BG command and

control hierarchy. From time to time, an agent with its subordinate BG unit may be added to or subtracted from a

higher level BG unit, or transferred from one higher level unit to another. For example, a flight of strike aircraft

may be under the control of the home base flight controller during take-off and landing, transfer to the control of a

forward air controller at the point of attack, and be transferred to the control of intermediate controllers on the way

to and from the target area. If added, the new agent joins the higher level BG unit as a subordinate.
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Df. The Plan Selector (PS) is a subprocess ofBG that works with a WM plan simulator

and VJ plan evaluator to select the best overall plan (i.e. job assignment, resource

allocation, and coordinated schedule) for execution by the EX subprocesses in the

BG process.

The Plan Selector maintains the plan buffer used by the EX subprocesses and assures that

the EXs always have the latest and best plan currently available.

Df. The EXecutor (EX) is a subprocess within BG that executes its portion of the

selected plan, coordinating actions when required, and correcting for errors

between planned results and the evolution of the world state reported by the world

model.

There is an EX subprocess for each subordinate BG unit. Each EX subprocess closes a

feedback control loop through the RCS_NODE to which it belongs. Each EX subprocess detects

errors between its current planned subgoal (i.e., desired state) and the observed (or predicted)

state of the world, and issues output subcommands designed to null the errors. The EX
subprocess may also output the current planned action as a feed forward command. The EX
subprocess detects when goals are achieved and increments to the next task and goal in the plan.

The EX subprocess may also detect when limits have been exceeded, or when emergency flags

have been raised, and take immediate emergency action.

4.1.1 Tasks and Task Decomposition

A task consists of an activity and a goal. The activity is designed to achieve the goal, and

the goal is a desired state to be achieved or maintained.

There are two types of task: one where the goal is to achieve a desired state, and a second where

the goal is to maintain a desired state. For type 1 tasks, achieving the goal terminates the task.

For example, a type 1 task may be <to drive to a locations <to assemble an engine>, or <to shop

for groceriesx Once the goal is achieved, the task is completed, and the next task can begin. For

type 2 tasks, the objective is to maintain the task goal state until a different task is commanded.

For example, a type 2 task may be <to maintain a temperature>, <to maintain a velocity>, or <to

maintain an altitudex

Both types of task imply action or purposeful lack of action. In natural language, action is

demoted by verbs. In the above examples of tasks, the infinitive form of the verb is used (e.g.

task = <to drive to a location>). The application of the verb <do> to the <task> transforms the

task verb from its infinitive to its active form. It puts the task verb into the form of a command.

For example, <do_<to look for enemy tanks» becomes a command to clook for enemy tanks>,

where <look for> is the action verb, and <enemy tanks> is the object upon which the action is

done.
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For any task, there is an action verb that is a command to perform the task. The set of

tasks that a BG process is capable of performing, therefore, defines a vocabulary of action verbs

or commands that the BG process is capable of accepting.

A task such as < drive vehicle to location x>, may be performed by a number of agents

(drivers) on a variety of objects (vehicles). A task such as “assemble an engine” may be

performed by a number of agents (assembly line workers) on a number of objects (e.g., pistons,

bearings, gaskets, head, and oil pan). At the input of the BG process, a task command such as

<look for tanks> or <assemble an engine> is encoded as a single command to do a single activity

to achieve a single goal. The JA subprocess at the input of the BG process performs the job

assignment function of decomposing the task into a set of jobs for a set of agents (e.g., a suite of

RSTA sensors, or team of assembly line workers). For each agent, a SC subprocess schedules a

sequence of subtasks, which are executed by the respective EX subprocess so as to accomplish

the commanded task.

Df. A task goal is the desired result that a task performed by a BG process is to achieve

or maintain.

A task command can be represented as an imperative sentence in a message language that directs

a BG process to do a task, and specifies the object(s), the task goal, and the task parameters. A
task command has a specific interface defined by a task command frame.

Df. The interface between BG processes at level(i+l) and level(i) consists ofa

message channel that encodes task commandframes, and a message channel that

encodes status responses that return to level(i+l) either directly, or through the

world model.

Df. A task command frame is a data structure containing the information necessary

for commanding a BG process to do a task.

A task command frame includes:

Task name (from the vocabulary of tasks the receiving BG process can perform)

Task identifier (unique for each commanded task)

Task goal (a desired state to be achieved or maintained by the task)

Task object(s) (on which the task is to be performed)

Task parameter(s) (such as speed, force, priority, constraints, coordination

requirements)

Planned next task (for look-ahead beyond the current commanded task)

The planned next task allows the local BG planner to look ahead to its planning horizon,

even when that planning horizon extends beyond the end of its current task. In some

implementations, the task command frame includes the entire plan from the higher level plan.

However, if the system is designed right, it is seldom necessary for a planner to look beyond the

planned next task in the higher level plan. If information about the more distant future is

required at the lower level, this information should be explicitly provided by the upper level to
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the lower level in the form of a “get ready” command. For example, if a heater requires a heat-

up period that is longer than the lower level planning horizon, the higher level planner should

plan for a specific command to be sent to the lower level BG process to turn on the heater at the

proper pre-heat time.

For any task to be successfully accomplished, the intelligent system must possess task

knowledge that describes how to do the task. Conversely, for any BG process, there must exist a

library of tasks that the BG process knows how to do.

Task knowledge consists of the skills and abilities required for performing tasks. For

example, task knowledge may describe how to steer around an obstacle, how to follow a road,

how to navigate from one map location to another, how to avoid being observed from a

particular location, how to cross a creek or gully, how to encode a message, or how to load, aim,

and fire a weapon. Task knowledge may also include a list of equipment, materials, and

information required to perform a task, a set of conditions required to begin or continue a task, a

set of constraints on the operations that must be performed during the task, and a set of

information, procedures, and skills required to successfully execute the task, including error

correction procedures, control laws, and rules that describe how to respond to failure conditions.

Task knowledge may be acquired through learning, or inherited through instinct. It may
be provided in the form of schema or algorithms designed by a programmer, or discovered by

heuristic search over the space of possible behaviors. Task knowledge, together with

information supplied by task commands, is what enables the Behavior Generation processes to

perform tasks. Task knowledge can be represented in a task frame.

Df. A task frame is a data structure specifying all the information necessaryfor

accomplishing a task.

A task frame is essentially a recipe that specifies the materials, tools, and procedures for

accomplishing a task. A task frame may include:

• Task name (from the library of tasks the system knows how to perform). The task

name is a pointer or an address in a database where the task frame can be found.

• Task identifier (unique id for each task commanded). The task identifier provides a

method for keeping track of tasks in a queue.

• Task goal (a desired state to be achieved or maintained by the task). The task goal is

the desired result to be achieved from executing the task.

• Task objects (on which the task is to be performed). Examples of task objects

include targets to be attacked, objects to be observed, sectors to be reconnoitered,

vehicles to be driven, weapons or cameras to be pointed.

• Task parameters (that specify, or modulate, how the task should be performed).

Examples of task parameters are priority, speed, time of arrival, and level of

aggressiveness.

• Agents (that are responsible for executing the task). Agents are the subsystems and

actuators that carry out the task.

• Task requirements (tools, resources, conditions, state information). Tools may
include sensors and weapons. Resources may include fuel and ammunition.
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Conditions may include weather, visibility, soil conditions, daylight or darkness.

State information may include the position and readiness of friendly forces and other

vehicles, position and activity of enemy forces, and stage in the battle.

• Task constraints (upon the performance of the task). Task constraints may include

visibility of regions of the battlefield, timing of movements, requirements for

covering fire, phase lines, and sector boundaries.

• Task procedures (plans for accomplishing the task, or procedures for generating

plans). There is, typically, a library of plans for various routine contingencies and

procedures that specify what to do under various kinds of routine and unexpected

circumstances.

• Control laws and error correction procedures (defining what action should be

taken for various combinations of commands and feedback conditions). These may
be developed during system design, refined during testing, and possibly modified

through learning from experience.

Note that many of the items in the task frame are supplied by the task command frame. Other

items are provided by a priori knowledge.

Df. A task object is a thing in the world that is acted upon by an agent to accomplish a

task.

For any task object, there can be assigned a word (noun) that is the name of the object

upon which the task is performed.

Df. Task parameters are modifiers that specify when, where, how, or why a task should

be performed, or that prioritize a task, or specify how much risk or cost should be

accepted in performing the task, or set constraints, or modulate the manner in

which a task should be peiformed.

As defined in section 3, task decomposition is a process by which a task given to a BG process at

one level (i) is decomposed into a set of sequences of subtasks to be given to a set of subordinate

BG processes at the next lower level (i-1).

The set of task frames that are available to each BG process defines a set of task

commands that the BG process can accept. If the BG process is given a command to do a task

that it is capable of performing, it uses the knowledge in the corresponding task frame to

accomplish the task. If it is given a command to do a task that it is incapable of performing, (i.e.

for which there is no task knowledge stored in a task frame, or for which the resources specified

in the task frame are not available, or for which conditions specified are not true) it responds to

its supervisor with an error message = <can’t do because of condition xyz>.

The JA subprocess of the BG process accepts task commands with goals and priorities.

The JA, SC, and PS subprocesses develop or select a plan for each commanded task by using a

priori task knowledge, heuristics, and value judgment functions combined with real-time

information and simulation capabilities provided by world modeling functions. The planning

process generates the best assignment of tools and resources to agents, and finds the best
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schedule of actions (i.e., the most efficient plan to get from an anticipated starting state to a goal

state). EX subprocesses control action by stepping through the plan. At each control cycle, the

EX subprocesses issue feed forward commands and compare current state feedback with the

desired state specified by the plan. The EX subprocesses merge feed forward actions with

feedback error compensation and issue task commands to the next lower level BG processes that

maximize the likelihood of achieving the higher level task goal despite noise and perturbations in

the system.

Task decomposition consists of six generic functions:

1) A job assignment function is performed by a JA subprocess whereby:

a) A task is divided into jobs to be performed by agents

b) Resources are allocated to agents

c) The coordinate frame in which the jobs are described is specified

2) Scheduling functions are performed by SC subprocesses whereby a job for each agent is

decomposed into a sequence of subtasks (possibly coordinated with other sequences of

subtasks for other agents).

3) Plan simulation functions are performed by a WM process whereby the results of various

alternative plans are predicted.

4) Evaluation functions are performed by a VJ process on the results of simulations using a

cost/benefit formula.

5) A plan selection function is performed by a PS subprocess in selecting the "best" of the

various alternative plans for execution. The cost model in the value judgement process is

used to determine the best plan from cycle to cycle.

6) Execution of the best plan generated by functions 1-5 is performed by EX subprocesses.

The plan consists of a set of desired actions and a set of desired resulting states, or subgoals.

The set of desired actions form a set of feed forward commands. The set of desired subgoals

form a set of desired states. These are compared with observed states, and differences are

treated as error signals that are submitted to a control law to compute feedback

compensation. Feed forward and feedback compensation are combined to produce sequences

of subtask commands to BG processes at the next lower level in the control hierarchy.

The result of task decomposition is that each task (represented by a single task command)
presented to a single BG process generates a behavior defined by a set of subtask command
sequences presented to a set of subordinate BG processes.

Df. A job is an activity assigned by the Job Assignor to the Scheduler ofan agent within

a BG process.

A job is the output of a Job Assignor, and the input to the SC subprocess of an agent. A
job consists of a description of the work to be done by an agent, the job goal, the resources and
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tools necessary to carry out the job, and whatever constraints and requirements that exist for

cooperation with other agents. In the 4D/RCS reference architecture, the difference between a

job and a task is that a task is something to be performed by a BG process, and a job is

something to be performed by an agent. A job can have a job goal, a job command, and a job

command frame that are entirely analogous to a task goal, task command, and task command
frame.

4.1.2 Plans and Planning

As defined in section 3, a plan is a set of subtasks and subgoals that are designed

to accomplish a task or job, or a sequence (or set of sequences for a set of agents) of subtasks

intended to generate a sequence of subgoals leading from the starting state to the goal state.

In general, a plan is a path through state-space from an anticipated starting state to a goal

state. Typically, this path consists of a string (or set of strings) of actions and a string (or set of

strings) of resulting states. The actions and resulting states are subtasks. A plan performed by a

single agent is a job plan. A plan performed by a set of (possibly coordinated) agents is a task

plan.

A plan may be represented declaratively as an augmented state graph, a PERT (Program

Evaluation and Review Technique) chart, a Gantt chart, a PSL (Plan Specification Language)

[Schlenoff 00] code segment, or a set of reference trajectories through state space. A plan can

also be represented procedurally as a program that generates a set of sequences of subtask

commands and desired states that generate a path through state space from a start state to a goal

state while using resources and satisfying constraints.

Figure 1 1 illustrates a plan expressed as a state graph where nodes represent desired

states (or subgoals) and edges represent actions that cause state changes (or subtasks). Plans can

also be expressed as state tables or sets of IF/THEN statements as illustrated in Figure 1 1 . For

any state graph, a state table can be constructed such that each edge in the state graph

corresponds to a line in the state table, and each node in the state graph corresponds to a state in

the state table. The state table form has the advantage that it can be expressed as a set of

IF/THEN case statements that can be directly executed in a computer program.
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(a)

IF THEN
Stale Feecback Next St ate Output

SS Cl SI O!

SS C5 S5 C6
SS C4 S4 Ot
SI C2 S2 C2
S5 C7 SI 07
S5 C8 S6 ce
S6 C9 S2 C9

S2 C3 SG ce

(b)

Figure 11. Two forms of plan representations, (a) Shows an example of a

state graph representation of a plan that leads from starting state SS to goal state

SG. (b) Shows the state table that is the dual of the state graph in (a).

Figure 12 illustrates the decomposition of a task into a task plan consisting of three job

plans for three agents. Each job plan can be represented as a state graph where subgoals are

nodes and subtasks are edges that lead from one subgoal to the next. A job plan can also be

represented as a set of waypoints on a map, such that the waypoints are subgoals and the paths

between waypoints are subtasks.

The plan shown in Figure 12 consists of three linear lists of subtasks and subgoals. In

practice, each job plan could have a number of branching conditions that represent alternative

actions that may be triggered by situations or events detected by sensors. For example, each job

plan might contain emergency action sequences that would be triggered by out-of-range

conditions.

Coordination between agents can be achieved by making state transitions in the state

graph of one agent conditional upon states or transitions in states of other agents, or by making

state transitions of coordinated agents dependent on states of the world reported in the world

model.

Df. A schedule is the timing or ordering specificationsfor a plan.

A schedule can be represented as a time (or event) labeled sequence of activities or

events.
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lime

Figure 12. A task plan for three agents. The task is decomposed into three jobs for three agents. Each

job consists of a string of subtasks and subgoals. The entire set of subtasks and subgoals is a task plan for

accomplishing the task. In this example, a task plan consists of three parallel job plans.

Planning is a process of generating and/or selecting a plan to accomplish a task or job. Task

planning is performed by an organizational unit consisting of a number of agents. Task planning

consists of the following elements:

(1) Assigning jobs to agents and transforming coordinates where required.

(2) Allocating resources to agents.

(3) Generating a tentative set of concurrent and possibly coordinated job plans, one for

each of the agents.

(4) Simulating the likely results of this tentative set of job plans.

(5) Evaluating the cost/benefit value of each likely result.

(6) Selecting the set of job plans with the best evaluation as a task plan to be executed.

A diagram of a typical task planning process is shown in Figure 13. Planning elements

(1) and (2) in the above list are performed by JA, which assigns jobs and resources to agents and

transforms coordinates from task to job coordinates (e.g. from way point coordinates to steering

coordinates, or from map coordinates to camera image coordinates). Element (3) is performed

by SC subprocesses, which compute a temporal schedule of subtasks (or subgoals) for each agent

and coordinate the schedules between cooperating agents. Element (4) is where a hypothesized

string of actions (or subgoals) is submitted to the world model. In the case where hypothesized
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(i)th LEVEL TASK ARRIVES
FROM THE (i+1)th LEVEL BG MODULE

Figure 13. A diagram of planning operations within a 4D/RCS node. Boxes with square comers

represent computational functions. Boxes with rounded comers represent data structures.
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actions are submitted, the world model simulator uses a model of the environment to generate

expected results. In the case where desired subgoals are submitted, the world model uses an

inverse model of the environment to compute the feed forward actions required to produce those

subgoals. Element (5) is where the Value Judgment (VJ) process applies a cost function to the

string of actions and resulting subgoals to determine which of the various actions are submitted,

the world model simulator uses a model of the environment to generate expected results. In the

case where desired subgoals are submitted, the world model hypothesized alternatives is the best

(i.e., most efficient, most effective, lowest cost, or highest payoff). Element (6) is where the

evaluations produced by the VJ process are returned to the Plan Selector (PS) subprocess for a

decision as to the best plan of action. The hypothesized plan (i.e. set of job plans) with the best

evaluation is entered into the set of plan buffers in the EXecutors for execution.

Job planning is performed by a single agent. Job planning consists of the following

elements:

1 . Generating a tentative schedule of activities for a single agent, possibly coordinated

with the schedules of other agents.

2. Simulating the likely results of each tentative schedule of activities.

3. Evaluating the cost/benefit value of each likely result.

4. Selecting the tentative schedule with the best evaluation as a job plan to be executed.

Current military practice is typically that planning is done manually using maps, charts,

sand tables, and intelligence reports. Plan alternatives are chosen at execution time by rules and

human judgment. Plans may be rehearsed by walk-through, or by moving models on a sand

table. On the battlefield, plans are sometimes good only until the first shot is fired. Plans

typically need to be modified often and quickly to adapt to the flow of battle, to take advantage

of openings in the enemy defense, to compensate for losses, or to deal with unanticipated events.

Real-time modifications in plans are made by ad hoc methods that depend on the training,

experience, and intuition of officers and soldiers in the field.

Military planning is typically a distributed process that is done by many different

planners working in many different places at different times. For example, strategic planning

typically is done at a higher level than tactical planning and well before the battle begins. As

planning is done at successively lower level, each operational unit is required to develop its own
plans, scaled to its own time horizon and region of terrain, based on the plans developed at levels

above, and constrained by the resources available and conditions on the ground.

Yet, regardless of how, where, or when planning is done, in each stage of planning, the

elements of planning listed above typically come into play. However plans are synthesized, a

plan eventually must specify the decomposition of tasks for operational units into sets of job

assignments for agents, an allocation of resources, and a schedule of subtasks for each agent

ordered along the time line. Planning may need to be done iteratively and hierarchically through

many levels and by many different agents in different organizations before the plans are ready

for execution.

In all cases, plans must be synthesized prior to execution. In highly structured and

predictable environments, plans may be computed off-line long before execution. For example.
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in manufacturing, completely pre-computed plans, such as NC machine tool code, can be

developed months or years before execution. In such cases, real-time planning is unnecessary,

and execution consists of simply of loading the appropriate programs at the proper time and

executing the steps sequentially. However, this approach only works for processes where there

are no unexpected events that require replanning, or where human operators can intervene to

make the necessary adjustments. As the uncertainty in the environment increases and the

demands for agility grow, plans need to be computed nearer to the time when they will be

executed, and be recomputed as execution proceeds, to address unexpected events and to take

advantage of unpredicted opportunities. For military operations that depend on the state of many
factors that cannot be known ahead of time, operational plans need to be computed close to

execution time, and recomputed frequently during the course of operations. The repetition rate

of replanning must be at least such that a new plan is generated before the old plan is completed.

However, in highly uncertain environments, it is best if the planner generates a new plan before

the EXecutor completes the first step or two of the old plan.

The 4D/RCS is designed to support real-time planning. Planning within the 4D/RCS
architecture is distributed at many hierarchical levels with different planning horizons at different

levels. This facilitates the ability to replan fast enough to keep up with the demands of a rapidly

changing environment. At each hierarchical level, the planning functions compute plans that

extend from the anticipated starting state out to a planning horizon that is characteristic of that

level. On average, planning horizons shrink by about an order of magnitude at each lower level.

However, the number of subtasks to move from the starting state to the planning horizon remains

relatively constant (by rule of thumb, on average ten). This causes the temporal resolution of

subtasks to increase about an order of magnitude at each lower level. Planning horizons at high

levels may span weeks, months, or even years, while planning horizons at the servo level span

only a few milliseconds.

The number of levels required in a 4D/RCS hierarchy is approximately equal to the

logarithm of the ratio between the planning horizons at the highest and lowest levels.

N = logk (Ph/Pl)

where:

N = Number of levels required in the 4D/RCS hierarchy

Ph = Planning horizon at highest level in hierarchy

Pl = Planning horizon at lowest level in hierarchy

k = typical number of steps in plans at each level

logk = logarithm to the base k

4D/RCS can accommodate either precomputed plans, or planning operations that

recompute plans on demand or on repetitive cyclical intervals. For example, a string of GPS
coordinates can be treated as a precomputed path plan, and called when appropriate. On the

other hand, path plans can be generated using maps and intelligence reports about enemy
positions. These path plans can be recomputed as intelligence reports or observations of enemy
movements become available. The 4D/RCS generic planning capability can also accommodate

partially completed plans. For example, route plans or movement corridors computed in advance
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can be used by 4D/RCS real-time planners to provide constraints for real-time generation of

obstacle avoidance maneuvers and detour routes.

4.1.3 Plan Execution

Plan execution is a process where deliberative planning merges with reactive behavior.

In plan execution, plans are modified by feedback that provides information about how closely

the plan is being followed. Planning is a process that looks into the future and anticipates what

needs to be done in the interval between the starting state and the planning horizon. Plan

execution is a process that acts in the present to carry out the plan and correct for errors. For

each agent(j) in the BG process, there is a EXecutor EX(j) that executes and monitors feedback

relevant to the plan for that agent.

The generic structure of an EXecutor is shown in Figure 14. Each EXecutor contains a

plan buffer that is loaded with a plan by the plan selector. The plan consists of two parts: (1) a

trajectory of planned actions interleaved with (2) a corresponding trajectory of planned states (or

subgoals).

Request

replanning

from level i

Planner

estimated or

predicted state

feedback from WM

Plan from

Plan Selector

EXecutor

level i

Plan
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error out
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Figure 14. The inner structure of the Executor (EX) subprocess.

In addition to the plan, each EXecutor also receives input in the form of estimated (or

predicted) state feedback via Sensory Processing and World Modeling processes from sensors

that monitor the state of the world and the internal status of the system, and predicted status from

the task planner at level i-1 . Status to and from peer EX subprocesses via the WM provide the
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basis for coordination between EX subprocesses. Each EX subprocess has a compare operation

that computes differences between estimated (or predicted) state feedback, predicted status, and

the current planned subgoal. For discrete event systems, status may simply report “busy” or

“done” from lower level EX subprocesses.

Df. An estimated state is the WM’s best estimate of the state of the world based on all

previous sensory input.

Df. A predicted state is a prediction of the state of the world made by a dynamic model

in the WM based on the estimated state and commanded actions.

Df. A predicted status is a prediction of the status of the system based on the planning

process in the lower level BG process

Typically, feedback controllers use the predicted state if it is available from the WM. For

continuous control systems, the estimated or predicted state feedback is compared with the

planned subgoal, and a feedback error signal is generated. For a system with a lower level

planner, the predicted status of the system can be compared with the planned subgoal, and a

predicted status error can be generated. Either type of error can fall in three ranges:

1. Subgoal-done. If the error falls within an acceptably small neighborhood (i.e.,

tolerance) of zero, the subgoal is accomplished and the compare operation emits a

<done> signal. The subtask sequencer outputs the next planned action as a new feed

forward action to the control law and sends the next planned state to the compare

operation.

2. Feedback compensation. If the error falls between the subgoal-done neighborhood

and out-of-range conditions, the feedback error is sent to the control law for error

compensation. This enables the EXecutor to function as part of a servo control loop,

computing an output designed to null the difference between the estimated state

reported by the world model (and/or the lower level planner) and the planned

subgoal state.

3. Out-of range emergency. If the feedback error falls in the out-of-range conditions,

the emergency action generator is triggered to substitute an appropriate emergency

action in place of the current plan. The emergency action provides an immediate

response while the planner generates a new plan.

Under normal conditions, EXecutors spend the majority of their time in the feedback

compensation mode. The subtask-done mode is a transient condition that triggers a transition

from one node to the next in the plan state graph. The emergency error mode should occur only

rarely. A typical EXecutor is therefore usually in the process of outputting a feed forward action

and computing error compensation to null the difference between a planned subgoal and the

estimated or predicted state of the system.
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At all but the lowest level, outputs from an EXecutor become an input task command to a

Job Assignor in a subordinate BG process at the next lower level. At the lowest level, outputs

from EXecutors go to the actuator drive mechanisms.

4.1.4 Feedback and Feed forward

Feedback compensation operates on the error between desired and observed results.

Therefore, feedback compensation, by its nature, is always less than optimum. In most cases,

feedback errors can be reduced by increasing the servo loop gain. However, there are limits

beyond which increasing the gain produces instability. High gain feedback compensation is

stable only in systems where loop delays are short, relative to the dynamic response of the

system. When delays are significant, feedback compensation may arrive too late to reduce

errors, and may produce oscillations causing system instability.

Therefore, for systems with inherent delays (such as the delay between turning the

steering wheel and a change in vehicle motion direction), feed forward actions are desirable, and

may be necessary, to achieve high performance. Feed forward actions are derived from planning

models that enable the controller to anticipate the response of the system to planned actions. If

the models are precise and there are no perturbations or noise in the world, then feed forward

actions will produce the desired results with no error.

Of course, models are seldom perfect and there is almost always noise and perturbations.

Thus, it is rarely possible to precisely model and anticipate everything about the world. There

are almost always errors between planned and observed results, and thus there typically is a need

for feedback compensation. The best control strategy is to combine feedback compensation with

feed forward actions as is shown in Figure 14.

Planned actions can be used as feed forward actions that anticipate the behavior of the

system being controlled. Planned states then become desired states, that can be compared with

estimated or predicted states, to generate feedback compensation. The EX subprocesses then

combines feed forward actions with feedback compensation to provide the best possible control

of behavior.

4.1.5 Emergency Actions

In 4D/RCS, feedback errors are detected and addressed at the lowest hierarchical level

possible, where the response can be the quickest. At each level, the EX subprocess provides the

first line of defense against failure. The EX acts immediately and reflexively, as soon as an error

condition is detected, to make a correction by feedback compensation (if possible), or by a

preplanned emergency remedial action (if necessary). If either of these two processes is

successful, the error is corrected at the lowest level by the highest speed feedback loop, and the

agent proceeds with its current plan without intervention by higher levels.
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If, however, both error compensation and preplanned remedial actions are unsuccessful,

then replanning is required. In this case, the emergency action generator buys time for its

planner to replan by executing a preplanned emergency procedure (such as stop, or take cover)

until its planner can generate a new plan.

Only when error compensation, emergency action, and replanning at level are all

unsuccessful in correcting or preventing failure, will higher level executors and planners become

engaged to change tactics or strategy. Thus, error correction occurs at the lowest levels first.

Uncorrected errors ripple up the hierarchy, from executor to planner at each level and from lower

to higher level BG processes, until either a solution is found, or the entire system is unable to

cope, and a mission failure occurs. At any level, the system may request assistance from a

human operator or from another system.

4.1.6 An Example Planning-Execution Hierarchy

In Figure 15, a driving task <Go_to_point> requiring about two hours is input as a

command to the Platoon level. The planner at the Platoon level looks ahead to a planning

horizon about two hours in the future, and decomposes the task into a plan <Go_along_path>

from a starting point (S) to a goal point which is the first step in the plan at the next higher level.

The path at level 6 is defined by a set of way points, or subgoals (a61 ), (a62), (a63) . . . (a69)

leading to the goal point (a71). If the waypoints are equally spaced, they will be about ten

minutes apart.

Figure 15 shows the planning and execution activity at six levels of the 4D/RCS
hierarchy as this driving task is carried out. (In this example, the JA aspect of planning is

omitted for simplicity. Only SC functions are illustrated.) At each level (i), the planner looks

ahead to a planning horizon a time T(i) in the future. It computes a plan consisting of about ten

waypoints from the current state to that planning horizon. Thus the plan generated at each level

(i) will have steps approximately T(i)/10 apart in time. This yields discrete waypoints on the

ground in front of the vehicle with spacing proportional to the vehicle velocity. In the example

of Figure 15, a vehicle velocity of 10 meters per second (36 kilometers per hour) is assumed.

Each of the waypoints in the plan at each level will (with modifications by the executor)

become a task goal for the BG planner at the next lower level (i-1). Thus, at each lower level of

the 4D/RCS hierarchy, the planning horizon shrinks by about a factor of ten, and the distance

between waypoints in the plan decreases by a factor of about ten.

In this simple example, a plan is expressed as a simple linear string of waypoints such as

might be encountered while driving on an open road. More complex plans might be expressed as

a state graph with a number of conditional branch points, such as might be encountered when
driving through a network of city streets. For cross-country driving, it may be useful to assign a

tolerance that defines a corridor within which the vehicle is free to maneuver.
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Task: Go_to_point(a71)

Arrive at t + 2 hour

Level(6)

Platoon

Planner: Look_ahead (2 hour) every 10 min

Generate 10 waypoints (10 min apart)

Task: Go_to_point(a61)

Arrive at t + 10 min

Planner: Look_ahead (10 min) every 1 min

Generate 10 waypoints (1 min apart)

Level(5)

Section

Task: Go_to_point(a51)

Arrive at t + 1 min

Planner: Look_ahead (1 min) every 5 s

Generate 10 waypoints (5 s apart)
Level(4)

Vehicle

Task: Go_to_point(a41)

Arrive at t + 5 s

Planner: Look_ahead(5 s) every 500 ms Level (3)

Generate 10 waypoints (500 ms apart) Subsystem

Task: Go_to_point(a31)

Arrive at t + 500 ms

Level(2)

Primitive

Planner: Look_ahead (500 ms) every 50 ms
Generate 10 waypoints (50 ms apart)

Task: Go_to_point(a21)

Arrive at t + 50 ms

Planner: Look_ahead (50 ms) every 5 ms
Generate 10 waypoints (5 ms apart)

Level(l)

Servo

Task: Go_to_point(a1 1)

Arrive at t + 5 ms

planned path(6)

Figure 15. A 4D/RCS timing diagram. On the right, a typical planning horizon and a planned path

defined by about ten waypoints is shown for each level. At the bottom, a single servo executor cycle (read,

compute, output, wait) is shown. On the left, an example of a typical task command frame and the

functions performed by the planner is shown for each level.
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As the vehicle moves along its planned path, the planning horizon also moves ahead. For

example in Figure 16, when the vehicle is at the start (S), the planning horizon at level (4) looks

forward 50 seconds (a distance of 500 meters at a speed of 10 meters per second) to the next goal

(a)

Vehicle

at S

(b)

5 seconds

later

(c)

1 0 seconds

later

<d)

1 5 seconds

later

Figure 16. Replanning at T(i)/10 intervals. At time (a), when the vehicle is at point S, input to level(4) is a

command <Go-to a51> with a low resolution Section plan to go from S through waypoint a51 to a52. At time (a),

the level(4) Vehicle planner generates a higher resolution Vehicle plan (a41, a42, a43, .... a49) from S to a

planning horizon 50 seconds in the future. 5 seconds later, at time (b), about when the vehicle has reached waypoint

a41, the level(4) planner has generated a new plan. The waypoints are shifted down in the plan, and a new waypoint

is added at the end. This replanning process is repeated again every 5 seconds, at time (c) and (d).
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point from level (5) which is (a51). It generates a planned path (4) consisting of (a41), (a42),

(a43) ... (a49) and ending in (a51). As the vehicle begins to move, about 5 seconds later it

reaches (a41). The planning horizon is now 50 meters beyond the first goal point (a5 1 ). The
planner must now begin planning for reaching the second goal point (a52). The planning horizon

is indicated in Figure 16 by a rectangular box whose left side is at the present (t = 0), and whose
right side is at the planning horizon (t = T (4)).

As can be seen in Figure 16, in order for a planner at level (4) to plan to a moving
horizon T(4) in the future, it typically must have access to at least the next waypoint beyond T(4)

in the plan of the higher level(5). In Figure 16, the first waypoint in the Section level(5) plan is

(a51). The next waypoint beyond T(4) is the second waypoint in the Section level(5) plan which

is (a52). Typically, the planner at a level(i) does not require access to more than the next two

waypoints at level(i+l ).

4.1.7 Planner Timing

For real-time planning, the planner at a level must be able to generate a new plan in less

time than it takes to execute the old plan (i.e. <T(i)). Otherwise the system must periodically

stop and wait for the planner to complete its work. This type of behavior was typical of early

efforts in real-time planning. However, pausing periodically to wait for a planner is

unacceptable for Demo III applications.

In dynamic unpredictable environments, such as the battlefield where the world and the

goal may be changing rapidly, the planner must be able to replan much faster than real-time.

Ideally, the planner should be able to replan in the time it takes to execute the first waypoint in

the old plan. In this case, the planner will run every T(i)/10, and must run at lOx real-time. This

is illustrated in Figure 16 by a series of four replanning cycles. The planned path from the next

higher level is shown as input to the level (4) Vehicle task planner. This input plan consists of

waypoints (a51) and (a52). The level (4) Vehicle planner takes this input and generates a

planned path(4) that extends out to the level (4) planning horizon T (4) = 50 s. When the vehicle

is at position S, a level (4) Vehicle planned path is generated from S to a51. This consists of

waypoints (a41), (a42) ... (a49). By the time the vehicle has reached the first waypoint (a41),

another plan is generated again out to the planning horizon T (4) = 50 s, which now is beyond the

point (a51). All the planned waypoints are shifted left (a41 <- a42, a42 <- a43 ... a48<- a49) and

a new way point is generated for (a49). As this procedure is repeated, the vehicle moves along

the planned path. As it passes each waypoint on its planned path, it shifts its planned waypoints

left in the planned list, and adds a new waypoint at the planning horizon. At each level (i), the

planner thus always has a plan that extends out to its planning horizon at T(i). As it achieves

each step in its current plan, it computes a new plan with an additional step at the planning

horizon. In an uncertain environment, conditions may change as the vehicle moves along its

planned path. This may require that the replanning process alter some of the intermediate

waypoints in addition to adding a new waypoint at the planning horizon.

It may be possible to conserve computational resources if the planner generates plans

with logarithmic resolution - with the first steps in the plan at intervals of T(i)/10, and steps near
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the planning horizon at longer intervals. Replanning less frequently may also be used to

conserve computational resources. For example, if the replanning interval is T(i)/3, a new plan

will be generated only every three waypoints. The disadvantage with this second alternative is

that the system will not be able to respond as quickly to changes in the environment. In general,

the faster the replanning, the more adaptable is the behavior.

There is a trade-off between the respective capabilities of the planner and executor. The

executor has the advantage that it can adapt to changes in the environment within a single control

cycle. If the executor can adapt to a wide range of possible conditions, the need for frequent

replanning is reduced. On the other hand, the planner has the advantage that it can accommodate

a wider range of environmental changes and can exhibit a greater degree of creativity than the

executor. If the planner is sufficiently fast, the need for executor adaptability is reduced.

4.1.8 Executor Timing

The timing and frequency of change in the executor output depends on a number of

factors. There are four types of conditions that may require the executor to change its output.

These are:

A task assigned to a lower level BG process has been completed. This is

typically detected by the compare operation that observes that the feedback state is

within the pre-determined tolerance of the planned state. This generates a <done>

report to the subtask sequencer. The action is to send the next feed forward action to

the lower level BG process as a commanded task. For discrete event system, the

lower level EX subprocess may report a <done> status which is simply forwarded to

the subtask sequencer.

The executor has encountered an emergency condition. This is generated by an

<out of range> flag generated by the compare operation. The action required is to

output a reflexive response to the emergency condition.

A new plan is inserted into the plan buffer by the plan selector. The action

required is to issue a new feed forward action as the first step in the new plan.

The current estimated or predicted state of the world varies so that the

feedback error changes significantly. The action required is for the control law to

compute a new value of error compensation.

All of these conditions may change at any time, and hence require continuous monitoring

by the executor. Therefore, the executor must sample its inputs at a rate fast enough to enable it

to respond to sensory feedback in a timely manner. At each level of the sensory processing

hierarchy, filter time constants in the sensory processing hierarchy restrict the rate of change in

estimated and predicted state variables and hence the effective bandwidth of the servo loop of

which the executor is a part. At the lowest level, the time constants are short and loop bandwidth

is high. Thus, the lowest level executors need to cycle at the highest rates. In the 4D/RCS
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architecture, the servo level bandwidth required depends on the dynamic response of the

actuators being controlled. In the mobility subsystem, steering and braking actuators require

executor computation cycles on the order of 5 milliseconds. In the attention subsystem, camera

pan/tilt servos require similar executor computation cycles. At the primitive level,

accelerometers may produce signal bandwidths that also require 5 millisecond execution rates.

Data from other sensor systems such as CCD or FLIR cameras produce images that change 30

times per second. LADAR images arrive more slowly but LADAR may be merged with CCD or

FLIR data 30 times per second. Thus, executors at the subsystem level may need to compute

every 33 milliseconds. Higher level executor computation cycles can be less frequent because

estimated and predicted state variables at the higher levels require temporal integration of lower

level signals.

4.2 World Modeling

As defined in section 3, the reference model architecture, the world modeling (WM) process is a

functional process that constructs, maintains, and uses a world model knowledge database in

support of behavior generation and sensory processing processes. The WM process performs

four basic functions illustrated in Figure 17:

1) Maintenance and updating of information in the Knowledge Database (KD)

• In each node the WM process maintains the KD, keeping it current and consistent.

• The WM process updates the state estimates in the KD based on correlations and variance

between world model predictions and sensory observations at each node. This may be

part of a recursive estimation loop that operates at the data sampling rate.

• The WM process updates both images and symbolic frame representations and performs

transformations from image to symbolic representations, and vice versa.

• The WM process enters new entities into the KD, and deletes entities that are observed to

no longer exist in the world.

• The WM process maintains the pointers between KD data structures that define semantic

and pragmatic relationships between entities, events, images, and maps.

2) Prediction

• The WM process generates short term predictions of expected sensory observations that

enable sensory processing (SP) processes to perform correlation and predictive filtering.

• The WM process uses symbolic representations, iconic images, masks, and windows to

support visualization, attention, and model matching. Examples of predicted images at

lower levels might be what a particular camera would be expected to produce, or what a

series of tactile sensor readings might measure. At higher levels, predicted images might

be digital terrain maps showing obstacles, buildings, roads, bridges, woods, and other

terrain features. At still higher levels, predicted images might be maps of large regions.
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3) Response to queries for information required by other processes

• The WM process responds to “What Is?” queries from the BG (PL and EX processes)

regarding the state of the world or the state of the controller.

• The WM process may provide inferencing capabilities to compute responses for

information that is not explicitly stored in the KD.

• The WM process transforms information into the coordinate system requested by the

query.

4) Simulation

• The WM process performs simulations in response to “What If?” queries in order to

support the planning functions of the BG processes.

• The WM process uses structural and dynamic models and rules of physics and logic to

simulate the results of current and hypothesized future actions.

• The WM process may use inverse models to compute the actions required to produce

desired results.

Examples of simulation at lower levels might be of steering trajectories for high

speed cornering. At higher levels, path plans for obstacle avoidance might be simulated. At

still higher levels, various routes from one location to another or various formations for

tactical maneuvers might be simulated.
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Figure 17. World Modeling (WM) and Value Judgment (VJ) processes. WM and VJ processes

typically exist in every node of the 4D/RCS architecture.

4.3 Value Judgment

As defined in section 3, the Value Judgment (VJ) process is a functional process that computes

value, estimates importance, assesses reliability, and generates reward and punishment. Figure

17 also shows a block diagram of the functional operations and data flow pathways for

interactions between world modeling and value judgment. VJ processes evaluate plan results

simulated by the WM processes. VJ processes contain algorithms for the following:

Computing the cost, risk, and benefit of actions and plans

Estimating the importance and value of objects, events, and situations

Assessing the reliability of information

Calculating the rewarding or punishing effects of perceived states and events.

VJ processes compute the cost functions that enable intelligent behavioral choices. VJ
processes define priorities, set limits on risk, and decide how aggressive or conservative a system

should be in pursuing its behavioral goals. VJ processes assign values to objects, events, and
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situations recognized by SP processes. These assigned values may be used to compute whether

it is worthwhile to defend a position or to attack a target. Values placed on “friend” objects may
define how valuable they are, how vulnerable to attack, and how much in need of defense or

rescue. Values placed on “foe” objects may define how dangerous they are or how aggressive

they are likely to be toward the self-vehicle. Values placed on regions of space may define how
safe or risky it is to occupy that space, how costly to traverse it, how valuable a region of space

is, how worth defending, or how valuable to occupy.

Values placed on objects or regions of space can be overlaid on images or maps. This

enables image processing techniques to be applied to cost values as they are to other attribute

values such as intensity, color, or range. Values of cost and risk in an image can be analyzed to

find the lowest cost regions for path planning. Gradients of cost and risk can be analyzed to

generate commands for steering, or aiming. VJ processes may compute statistics on the

reliability of information about the world based on the correlation and variance between

observations and predictions. Confidence values can be assigned to state variables and regions

of the visual field. VJ processes evaluate perceived and planned situations to enable BG
processes to select goals and set priorities for behaviors. VJ processes also compute what is

important (for attention) and what is rewarding or punishing (for learning).

Cost values can also be associated with edges in a planning graph. A planning graph may
be a more complex structure than can be represented in a 2-dimensional array or image. And
there may be more than a single cost value associated with an edge in a planning graph. For

example, the cost of traversal between two nodes in a graph may be direction-dependent (e.g., a

one-way street, or the slope of a hill.)

VJ processes compute different types of values at different hierarchical levels. For

example, at levels one and two, VJ may compute of cost functions for path planning that

minimize jerk or acceleration. At levels three and four, VJ may minimize energy or time. At

levels five and six, VJ may minimize risk or exposure to enemy action.

4.4 Knowledge Database

The Knowledge Database consists of data structures and the static and dynamic

information that collectively form a model of the world. The KD is the information needed by

the WM to support the BG, SP, and VJ processes in each node. Knowledge in the knowledge

database includes the system’s best estimate of the current state of the world plus parameters that

define how the world state can be expected to evolve in the future under a variety of

circumstances.

Types of data structures include scalars, vectors, arrays, symbols, strings, pointers, lists,

frames, and graphs. Information in the knowledge database include signals, state variables,

names, characters, numbers, attribute values, relationships, images, maps, rules, equations, and

recipes. Knowledge includes structural and dynamic models that describe how the world

behaves, and task knowledge that describes how to do tasks, what tools to use, what resources

are needed, and what information is required. State variables define estimated conditions in the
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world. Attributes describe properties. Entities and events can be represented in frames that

contain lists of state variables, attribute values, and relationships. Images contain information

about the position of entities in the world, and maps can provide geometric representations of

terrain overlaid with labels, icons, and text that contain information necessary for situation

assessment and planning of action.

4.4.1 Signals

Df. A signal is outputfrom a sensor that measures a phenomenon in the environment.

A signal may represent an attribute such as amplitude, intensity, frequency, time delay,

temperature, color, position, velocity, or force. An attribute can be represented by a time

dependent scalar of a vector variable. For each attribute variable, temporal derivatives and

integrals can be computed to several orders. Signals may be filtered to remove noise or detect

frequencies or rates of change.

4.4.2 Entities

Df. An entity is something existent with continuity ofgeometric structure.

It is important to distinguish between entities that exist physically in the world and

entities that exist either mentally in the mind or logically in an intelligent system's knowledge

base. We will designate entities in the world as external entities and entities in the mindor in the

intelligent systems as internal entities.

Df. An external entity is an entity that exists in the real world external to the intelligent

system.

External entities typically are clumps of matter that occupy space and are physically

connected in some way. For example, an external entity may be an object such as a rock or a

post. It might be a fireplug, an automobile, a person, a hat, a chair, a building, a window, a

stairway, or a step. It might be a surface, such as that of a leaf, a meadow, or a road. It may be

an intersection of two roads. It may be the edge of a building or the point of a needle. It may be

the end of a line, or a dot on a page. An external entity might be a bush or tree consisting of

hundreds or thousands of leaves, branches, and twigs. It might be a vine that may climb on and

intertwine with the branches of a tree or bush. It might be a river with many tributaries that

sometimes flood - and sometimes dry up. It might be a lake with miles of coast-line consisting

of rocks and inlets with waves that surge and ebb. External entities may also be groups of things

that are not physically connected, but possess common attributes such as spatial proximity or

similar motion. For example, an external entity may be a cloud of smoke, a swirl of dust, a flock

of birds, a school of fish, a wave of water, a crowd of people, a stream of traffic, a forest

(consisting of hundreds of trees and bushes), falling rain or snow, or a lawn (consisting of

millions of blades of grass).
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External entities often correspond to things in the external world that can be measured or

counted, such as pebbles, grains of sand, drops of water, items of clothing, furniture, structures,

or vehicles. Manufactured entities typically are well defined with surface properties that can be

precisely measured. Edges may be defined in terms of intersecting surfaces, or by sharp radii of

curvature in the surface of the object, or by sharp discontinuities in range or color. Many natural

entities are not clearly defined and cannot be precisely measured. For example, where exactly

does a mountain begin and a valley end? Where is the bottom of a sand dune, or the edge of a

weather front? The answers to these questions depend on the scale and resolution of the

measurement.

These examples suggest that the concept of an entity is not inherent in the environment,

but is a hypothesis imposed on the world by an observer in the intelligent system to facilitate an

interpretation of sensory input from the world. External entities are simply the observer’s way of

organizing data about the world in a manner that increases the probability of successful behavior.

Df. An internal entity is a data structure in the knowledge database that represents a

hypothesized external entity

An internal entity corresponds to a concept. It is an internal representation of something

real or imagined. Internal entities are things the intelligent system perceives about the world.

They exist only as data structures in the intelligent system. An internal entity may consist of a

labeled group of pixels in an image, or a symbolic frame that contains attributes, state, and

relationship pointers. An internal entity may represent an external entity such as a rock, or a tree,

or the surface of a road or a building. However, the internal entity is only a data structure that

contains information about the external entity. It is simply the observing system’s best estimate

of what exists in the world.

It is possible to have internal entities with no corresponding external entity at all. For

example, an intelligent system may mistake a wooden model of a tank for a real tank, or a

camouflaged tank for a clump of bushes. Camouflage and deception that create incorrect

representations of reality in the mind of the enemy are common tools of warfare.

So how does the intelligent system know whether there is any corresponding external

reality? The short answer is: “It doesn’t.” Any system can only estimate the probability that its

internal entities have corresponding external entities. When predictions based on internal

hypothesized entities correctly predict the future, the probability that the hypothesized internal

entities correspond to external reality is increased. When predictions based on hypothesized

internal entities fail to predict the future, the probability that the entity hypothesis is correct is

reduced. If the probability of correctness rises above an upper threshold, the system accepts the

entity hypothesis as true and acts accordingly. If the probability of correctness falls below a

lower threshold, the entity hypothesis is rejected as false and an alternative entity hypothesis is

generated.

These examples illustrate only some of the deep philosophical issues surrounding the

problem of knowledge representation. Sufficient for the discussion here is to note that all

internal representations are hypothetical constructs internal to the intelligent system that enable it
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to interpret sensory input. It is only a hypothesis that a corresponding external reality exists.

What is important is not whether a hypothesis is true, but whether it has functional utility, i.e.,

whether is produces a representation of the world that is useful in generating successful behavior.

The utility of a hypothesized entity can be measured by its ability to explain the past and

predict the future. The criterion is whether an entity hypothesis produces significant

performance benefits. An intelligent machine that can accurately predict even a few seconds into

the future is more likely to survive and achieve behavioral goals than one that can only react to

events after they occur. A system that is able to predict hours or days into the future has an

enormous behavioral advantage. Reliable prediction enables the intelligent system to plan and

take preemptive action to avoid danger, maximize benefit and payoff, minimize cost and risk,

and win in competition with other systems that have inferior predictive powers. Whether

internal entities actually correspond to external reality is largely irrelevant and in many cases

may be undecidable. All that really matters is whether hypothesized internal entities increase the

reliability of predicting the future and hence the probability of successful behavior.

Df. An entity attribute is a property ofan entity.

Entities have attributes that are properties of the entity as a whole. For example, a pixel

entity may have attributes such as intensity, color, spatial or temporal gradients, range, position

in the image, and image flow rate and direction. An edge entity may have attributes such as

length, curvature, position, velocity, orientation, magnitude, and type (e.g., range-edge,

brightness-edge, color-edge, texture-edge, surface-intersection-edge). A surface entity may have

attributes such as area, curvature, position, velocity, orientation, temperature, and texture. An
object entity may have attributes such as volume, shape, position, velocity, orientation,

temperature, and mass. A group entity may have attributes such as volume, density, shape,

position of the center of gravity, mean velocity, variance about the mean, and relationships

between group members.

Entity attributes may exist in three forms:

1. Observed attributes that are derived directly from sensors, or computed from other

observed attributes, e.g., an observed edge velocity.

2. Estimated attributes that are computed from observed attributes by recursive

estimation or another filtering technique, e.g., a best estimate of an edge velocity.

3. Predicted attributes that are computed from estimated attributes using knowledge

of system dynamics, geometry, and control actions, e.g., a prediction of the future

value of an edge velocity.

The attributes of an object that vary over time (such as position, velocity, energy,

momentum, or temperature) are often called state variables.

Df. State variables are attributes that define the state of the entity or process.

A state is typically realized with a data structure containing a set of state variables for

representing the dynamic condition of an entity or a process. The state of a physical object
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typically refers to its position and velocity (and sometimes higher derivatives) at a point in time.

The state of an electric circuit may refer to voltage or current levels at specific points in the

circuit. The state of a finite state machine refers to the node in a state graph, or the line in a state

table, that is active. The state of a software process may represent the point of execution in a

flow chart, the contents of an instruction counter, or the currently executing statement in a

program at a point in time. The state of a physical process may represent the temperature,

pressure, density, volume, chemical composition, or flow rate of the participants in a reaction at

a point in time. The state of a situation may represent the relationships that exist between entities

in an environment at a point in time. The state of a control system normally refers to the current

condition of the system. In the ideal case where there exists a perfect system model and

complete knowledge of future inputs, knowing the current state enables the prediction of all

future states. An entity or process can have past, present, or predicted future states.

The definition of state is context sensitive. An entire control system may have a state.

Each individual node in a 4D/RCS control system may have its state. A process inside of a node

may have a state.

An entity, together with its attributes, state, and relationships to other entities may be

represented in the knowledge database in symbolic form as an entity frame.

Df. An entity frame is a data structure usedfor representing an entity and contains the

entity name, a state, a list ofattribute-value pairs, a pointer to a parent entity,

pointers to sub-entities, a pointer to the entity image and/or map in which the entity

can be observed, and pointers that define relationships with other entities or events.

An entity frame contains information that the intelligent system knows about an entity.

Figure 18 shows an example entity frame. The entity name is an address or index by which the

entity frame can be accessed in a database or library of entities, and to which other entity frames

can be linked. An uncertainty parameter can be associated with the name to indicate how certain

the system is that the entity has been properly identified. The entity frame contains estimated

entity attributes that are the system’s best estimate of entity color, size, and shape. Entity

attributes are characteristics and properties of the region occupied by the entity. Observed entity

attributes can be computed from sensor signals by integrating attributes of the pixels belonging

to the entity in the image [Adelson and Movshon82]. Predicted entity attributes can be computed

from estimated entity attributes by temporal projection through the world model.

Entity state-variables describe dynamic properties such as position, orientation, and

velocity of the entity in a particular coordinate system. These can be used as parameters in world

modeling processes for prediction and simulation, and by sensory processing functions for

classification, detection, and recognition. Uncertainty parameters can be associated with state-

variables to indicate the dependability of the estimates of these values. Observed state-variables

are typically defined in sensor egosphere coordinate system. Estimated and predicted entity

state-variables may also be in egosphere coordinates, or may be transformed into some other

more convenient coordinate system.
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NAME = entityJd (uncertainty) // this is the frame address in the KD

//attributes - these are characteristics that address the question What?
estimated color = red, green, blue intensities

estimated size = length, height, width dimensions

estimated shape = curvature, moments, axes of symmetry, etc.

// state - these are dynamic properties that address the question Where?
estimated position = azimuth, elevation, range, (uncertainties)

estimated orientation = roll, pitch, yaw (uncertainties)

estimated velocity =v-azimuth, v-elevation, v-range, v-roll, v-pitch, v-yaw (uncertainties)

// class - pointers to the entity image and classes to which the entity belongs

entity image = pointer to the entity image in which the entity appears
generic classl = pointer to the generic classl prototype

generic class2 = pointer to the generic class2 prototype

generic class3 = pointer to the generic class3 prototype

// value or worth of the entity

worth to preserve = value of preserving

worth to acquire = value of acquiring

worth to defend = value of defending

worth to defeat = value of defeating

//pointers that define parent-child relationships

belongs to = pointer to parent entity

has parti = pointer to subentityl

has part2 = pointer to subentity2

has part3 = pointer to subentity3

//pointer that define situational relationships

on top of = pointer to entity below

beside-right =pointer to entity on right

// queues that store short-term state history and expected future states

short term memory = pointer to STM queue
short term expectations = pointer to STE queue

//functions that define behavior

behaviorl = responds-to

behavior2 = acts-like

Figure 18. The structure of a typical entity frame. Each entity frame consists of a name, a list of

estimated attributes, and a set of pointers to other entities. The list of pointers includes a pointer to the

entity image that contains regions labeled with the entity_id.

Entity state-variables are time dependent. Thus, there exists a string of states that define

a trajectory through state space. This can be represented in the entity frame by a queue of states

that store a short-term memory trace for each entity. Predicted future states of each entity can

also be represented in an entity frame by a queue of states that represent short-term expectations

for each entity.

An entity frame may contain pointers to the entity image in which the entity appears. For

example, an object entity will have a pointer to the object image in which it appears. This can

enable a graphic engine to overlay entity names or attributes on the image or map. An entity

frame may also contain pointers to the class or classes to which the entity belongs. For example

an object entity frame may have a generic class pointer that identifies it as a member of the class
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of trees. The same object entity frame may have a second generic class pointer that identifies it

as a member of the class of pine trees, as well as a specific class pointer that identifies it as a

particular pine tree.

The entity frame may contain value attributes that define how valuable an object is as a

target (if a foe), or how worth defending (if friend). Value attributes may also define how much
a particular entity or situation should be feared or avoided, what a particular location may be

worth as a vantage point or as a source of shelter or food. This enables VJ to compute whether

or not it would be worth the cost and risk of acquiring it or defending it.

The entity frame may contain pointers that define inheritance relationships with other

entities. Each entity frame has a pointer to the frame of a parent entity of which it is a part, and a

set of pointers to frames of sub-entities that are its parts. For example, an object entity frame

typically will have a parent pointer to the entity frame of the group to which the object belongs.

It will have a number of sub-entity pointers to the surface entity frames of the surfaces and

boundaries that are its parts. Similarly, each surface entity frame will have a parent pointer to

the object entity to which it belongs, and a set of sub-entity pointers to the list entities that are its

parts. Each list entity frame will have a parent pointer to the surface entity frame to which it

belongs, and a set of sub-entity pointers to the pixels that are its parts. Inheritance pointers are

established and maintained by grouping and classification operations performed by sensory

processing functions at various levels in the hierarchy.

The entity frame may also contain pointers that define spatial, temporal, causal, or other

types of relationships that pertain to that particular entity. An entity frame may include a set of

functions that describe the behavior of the entity under certain conditions or in response to

certain stimuli. Simple functions may define the behavior of objects under the influence of

gravity or friction. Complex functions may define how the entity might be expected to respond

to an attack or a gesture of friendship. Behavioral functions may include parameters such as

speed, endurance, strength, or range of weapons. Behavioral functions and parameters may be

inherited from generic or specific class prototypes.

A block diagram of an entity frame is shown in Figure 19. Entity frames may stand alone

as data structures, or be linked to form lists, strings, words, sentences, networks, and maps.

Named entity frames provide the basic building blocks of language - nouns. Named entities may
be used as the subjects or objects of sentences, and the agents or objects of action. In language

applications, entity attributes may serve as adjectives that describe characteristics of the entities

to which they are attached. Entity frames can easily be implemented as objects or classes in

modem computer languages such as Ada, C++, or Java.
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Figure 19. An entity frame consisting of a name, an attribute vector, a state vector, a queue of state

vectors consisting of observed and expected states, and a set of pointers that describe relationships with

other patterns.

Entity frames can be interconnected by pointers to form causal, semantic, and situational

networks. Situational networks may represent situations or geometric relationships such as “on-

top-of", “beneath ”, “to-the-right-of\ “in-front-of’ , and “inside-of”. Situational networks may
also have pointers to maps or images that pictorially display spatial relationships. Causal

networks represent the cause-and-effect relationships between entities, events, situations, and

actions that occur in the world. Semantic networks represent the relationships between entities,

attributes, situations, actions, and events that define meaning and enable reasoning, logic, and

language.

4.4.3 Classes of Entities

There are several stages in which an intelligent system acquires knowledge about external

entities in the world. At each stage, it is possible for the intelligent system to take action using

the knowledge acquired at that stage. This enables the intelligent system to act quickly and

efficiently without waiting for a complete analysis of every entity in every situation. For

example, it is sufficient for an insect flying through a complex environment to simply know
where surfaces are located relative to its intended flight path. A house-fly does not need to

recognize objects to avoid hitting them. All it needs to know is that regions of space are

occupied and unavailable for flying.

There are at least three types of internal entity classes that are useful for behavior

generation in intelligent systems:

1 . Geometrical entity classes

2. Generic entity classes

3. Specific entity classes.
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Geometrical Entity Classes

Geometrical entity classes are defined by the geometric properties of entities.

Geometrical entity classes include point, list, surface, object, group entity classes. Each of these

classes can be represented by geometrical entity frames. These classes are related to each other

by a taxonomy of grouping relationships. List entities consist of groups of point entities.

Surface entities consist of groups of list entities. Object entities consist of groups of surface

entities. Group entities consist of groups of object entities. Each sub-class of geometrical entity

class is described in more detail as follows:

Point Entity Classes (Level 1):

Point (or pixel) entity classes have attributes that can be measured by a single sensor at a

single point in time and space, or that can be computed at a single point (or over a single

pixel) in time and space. Point attributes may describe the properties of a single pixel in an

image. Examples of pixel attributes are intensity, color (red, green, blue), range, spatial and

temporal gradients of intensity or range, flow direction and magnitude. Point attributes may
also describe the output of a single sensor, such as a position, velocity, torque, or

temperature sensor, at a point in time

List Entity Classes (Level 2):

List entity classes consist of sets of point (or pixel) entities that satisfy some gestalt

grouping hypothesis [We 58] over space and/or time. List entity classes include edge,

vertex, and surface patch entities. For example, an edge may consist of a set of contiguous

pixels for which the first or second derivatives of intensity and/or range exceed threshold

and are similar in direction. A vertex may consist of two or more edges that intersect. A
surface patch may consist of a set of contiguous pixels with similar first or second

derivative of intensity and/or range and similar image flow vectors. Edge, vertex, and

surface patch entity attributes are computed over the set of points that comprise the entity.

For example, edge entity attributes may represent the orientation, length, and curvature of

the edge, the sharpness or magnitude of the discontinuity at the edge, as well as the centroid

of the group of points that make up the edge. Vertex attributes may describe the

relationship between the set of edges that make up the vertex. For example, vertex

attributes may define the type of vertex (e.g. an endpoint, V, T, or Y), the orientation of the

vertex, and perhaps the angles between lines forming the vertex. Surface patch attributes

may describe the collective properties of the set of connected points that make up the patch.

For example, surface patch attributes may define the position, and velocity of the surface

patch, the texture, and the orientation of the surface patch relative to the viewing point.

Surface entity classes (Level 3)

Surface entity classes include surface and boundary entities. Surface entities consist of

sets of contiguous list entities that satisfy some surface gestalt grouping hypothesis. For

example, a surface may consist of a set of contiguous surface patches that have similar

range, orientation, texture, and color. A boundary may consist of a set of edge entities that
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are contiguous along their orientation. Surface and boundary attributes are computed over

the entire set of points that are included within the entity. Surface attributes may describe

the properties of the surface, such as its area, shape, roughness, texture, color, position and

velocity of the centroid, etc. Boundary attributes may describe the properties of the

boundary between two surfaces computed over the set of points that make up the boundary.

For example, boundary attributes may define the shape of the boundary, its orientation, its

length, its position, and velocity, which side each surface lies on, etc.

Object entity classes (Level 4)

Object entities consist of sets of contiguous surface and boundary entities that satisfy

some object gestalt group hypothesis. For example, an object may consist of a set of

surfaces that have roughly the same range and velocity, and are contiguous along their

shared boundaries. Object attributes are computed over the entire set of points that are

included within the object. Object attributes may describe the properties of an object, such

as its volume, shape, projected size in the image, color, texture, position and velocity of

centroid, orientation and rotation about the centroid.

Group entity classes (Level 5)

Group entity classes consist of sets of objects that have similar attributes, such as

proximity, color, texture, or common motion. Group attributes are computed over the entire

set of objects that are included within the group. Group attributes may describe the

properties of a group, such as the number of its members, size, density, position, velocity,

average direction of motion, and variance from the mean.

The above taxonomy of geometric entity classes was chosen because it parallels common
approaches to image processing, and because it appears to bear some resemblance to image

processing in the brain. The five levels of geometric entity classes correspond to 5 levels of

grouping of lower-level entities into higher-level entities. Pixels sum together, or group, all the

incident radiation falling on the region occupied by a photodetector in the image plane of a

camera or retina. List entities group pixels into edge fragments and surface patches that can be

given a name, and for which attributes can be computed. Surface entities are groups of list

entities. Object entities are groups of surface entities. Group entities are groups of objects. This

is a useful approach to segmenting an image into regions with attributes that can be measured.

For example, in a typical image one can measure the length of an edge, the area of a surface, the

projected size of an object, and the density of objects in a group. Entity attributes may include

shape, color, temperature, position, orientation, and motion. Geometric attributes can be

measured in the 2-dimensional image in terms of azimuth and elevation angles.

If range can also be measured (or estimated), the size, shape, position, orientation, and

motion of entities in 3-dimensional space can be computed. This allows entities to be visualized

from perspectives other than the camera or eye. For example, entities can be placed on a map.

Unambiguous spatial relationships can be determined in the three dimensions. These are

required for planning tasks and paths through the environment. The ability of a system to build a

geometric model of the space around itself, and to know unambiguously the range as well as
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azimuth and elevation of every point in the visual image is the first step in image understanding.

Once 3-dimensional geometry of the world is represented and this 3-dimensional space is

segmented into surfaces, boundaries, objects, and groups with spatial and temporal attributes

(i.e., geometric and dynamical properties), the perceptual process is ready for the next phase of

sensory processing and world modeling, namely, classification into generic and specific classes.

Generic Entity Classes

Generic entity classes may include roads, buildings, grass, trees, bushes, water, dirt, sand,

sky, and clouds. For any generic entity class, there exists a set of attributes that define a template

(or prototype.) The class prototype exemplifies the class and defines the criteria for deciding

whether a particular geometric entity is or is not a member of a generic entity class. Observed

geometrical entities that have attributes matching those of the generic entity class prototype may
be classified as belonging to the generic entity class. The set of attributes that define a class

prototype are called criteria for recognition.

Df. An entity class prototype is an entity image orframe that exemplifies or provides

the norm for an entity class.

The entity class prototype is an ideal example of the class. It is the standard by which

geometric entities can be assigned to generic classes. An entity class prototype may be

represented in the world model knowledge database in either iconic or symbolic form, or both.

For example. Figure 20 shows both a prototype image and a prototype frame for a generic object

class - an Ml tank. A generic entity class may have many prototype images, taken from different

perspectives under a variety of different conditions. An entity class typically has only one, or at

most a few, prototype frames. This is because the attributes in the frame representation tend to

be invariant with respect to perspective and viewing conditions.

Generic class prototypes may exist for any geometric entity type (pixel, list, surface,

object, or group entities). For example, pixels in aerial or satellite photos are often classified as

belonging to a generic entity class on the basis of color or multi-spectral image values. A list

entity patch may be classified as a road patch if it has the color and texture of a generic road

patch template. Edge entities may be classified on the basis of orientation, magnitude, or type

(intensity, color, or range edges). A geometric edge entity may be classified as a road edge if it

has attributes similar to those of a generic road-edge class template. Surface entities may be

classified on the basis of texture, orientation, shape, size, color, or motion. A geometric surface

entity may be classified as the side of a building if it has attributes that match those of a generic

building-wall class template. Object entities may be classified on the basis of shape, size,

material, color, texture, position, orientation, or motion. Group entities may be classified on the

basis of shape, size, density, or motion.
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Entity Prototype Image Entity Prototype Frame

IMAGE = Object#"! 3 NAME = Object#! 3

side view

I Vf

<W(vrvrHT*>

front view

/~q~a

Type = Tank, U.S.

Model = M-1

Weapon = 90 mm cannon

Weapon range = 2 km
Top speed = 45 mph
Part-of = Blue force

Has-partl = Turret

Has-part2 = Gun
Has-part3 = Body
Has-part4 = Wheels

Has-part5 = Dust cloud

Figure 20. An entity prototype for image and frame representations. The entity prototype image may
be a stored photograph, or an image generated by a graphics engine from symbolic data such as a

Computer-Aided Design (CAD) data file. The entity prototype frame provides a symbolic description of a

typical entity in the generic class. The entity frame may include information that is not available from

sensory input. For example, the range of the weapon may be known from the generic class of the tank, but

cannot be measured from sensory data.

An intelligent system may have thousands of generic entity classes. The problem with

having a large number of classes is not the amount of memory required to store them, but the

number of comparisons required to classify geometric entities as members of generic entity

classes. As the number of classes grows, number of computations required to make a

classification grows, as does the probability of misclassification. The number of comparisons

required for classification can be addressed by parallel computational methods. The probability

of misclassification can be reduced by including context from higher levels, and constructing

lists of entities of attention based on task requirements and priorities. Such lists can be compiled

using both top down and bottom up inputs to evaluate importance and likelihood of occurrence

in a given task environment.

Specific Entity Classes

A specific entity class has only one member. A specific entity is in a class all to itself. It

is a particular instance of a thing. It has unique attributes that distinguish it from all others. A
specific object entity may be a specific person, a particular building, or a unique tree. A specific

surface entity may be a particular surface of a specific object. A specific list entity may be a

particular edge of a specific surface. A specific entity prototype contains the attributes that

uniquely identify an entity as the one and only entity in that class. If the attributes of an

observed geometric entity match the attributes of the specific entity class prototype, the observed

entity is recognized as the specific entity.

There can be a taxonomy of entity classes. For example, a specific tree may be a member
of the generic class of oak trees, which is a member of the generic class of deciduous trees.
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which is a member of the generic class of trees, which is a member of the generic class of plants,

which is a member of the generic class of living things. This taxonomy of classes can be

represented in the knowledge database by a set ofpointers, or links, between classes. A pointer

to a more generic entity frame defines an “is_a” or “belongs_to” link. Pointers to more specific

classes define “an_example_of” or “contains” links.

4.4.4 Images

Df. An image is a two-dimensional array or manifold ofattribute values.

Images may be generated in a number of ways. For example, an image may be formed

by a sketch, drawing, or array of dots on a sheet of paper. Images can be formed by the

projection of electrons on the face of a cathode ray tube, or by the optical projection of light from

a scene in the world through a lens onto a focal plane or surface. If the focal surface is covered

with a photosensitive film, an image will be represented by color or density changes in the film.

If the focal surface is covered by an array of photoreceptors such as in a CCD TV camera or the

retina of an eye, the image will be represented as electrical charges on the receptor array. Images

can also be generated by internal mechanisms (such as a computer graphics engine) from

information stored in symbolic entity frames such as vectors or polygons.

An array of photodetectors, on the focal plane of a TV camera, a FLIR, a retina, or the

compound eye of an insect, spatially quantizes the image into picture elements. A scanning

mirror and pulsed laser beam spatially quantizes a LADAR image. Each photodetector

integrates the energy falling on it to produce a signal. The region on the egosphere covered by

each photodetector is represented by a pixel.

Df. A pixel is a picture element.

A pixel is the smallest distinguishable region in an image. The region within a pixel has

no discernible internal structure.
7
The signal from each pixel in a TV or FLIR image

corresponds to an intensity or color attribute integrated over the entire area of the pixel. The

signal from each pixel in a LADAR range image may simply represent shortest (or longest)

range detected within the pixel, or may list several ranges corresponding to multiple returns from

a single laser pulse.

In the RCS Knowledge Database (KD), there can be four types of images: 1) attribute, 2)

entity, 3) class, and 4) value images.

Df. An attribute image is a two-dimensional array ofattribute values.

1
This is true for 2-dimensional images. However, a LADAR may produce an image with multiple values of range

at each pixel. For example, a single LADAR pixel may contain a first range value from a laser beam striking a wire,

and a second range value from the same beam striking a building behind the wire. In fact, a LADAR beam may
produce multiple returns when pointed at a bush or stand of tall grass or weeds. Multiple returns can also be

produced by falling rain or snow, or clouds of dust or smoke.

97



In an attribute image, each pixel contains the value of the attribute that is measured or

computed at that pixel. There are a number of attributes that can be computed at each pixel and

hence a number of attribute images. These attributes include: intensity, color (red, blue, green),

stereo disparity, range, image flow magnitude and direction, texture, surface orientation, and

spatial or temporal gradients of intensity, color, or range (and possibly multiple range images.)

For each attribute, an attribute image can be constructed and maintained in registration with the

other attribute images. This produces a three dimensional array of pixel attributes as illustrated

at the top of Figure 2 1

.

red = rd

blue - bl

green = gr

brightness = I

xgrad = dl/dx

ygrad = dl/dy

tgrad = dl/dt

range = r

rxgrad = dr/dx

rygrad = dr/dy

rflow = dr/dt

xflow = dx/dt

yflow = dy/dt

list name = list entity to which the pixel belongs

surface name = surface entity to which the pixel belongs

object name = object entity to which the pixel belongs

group name = group entity to which the pixel belongs

generic class 1 to which the pixel belongs

generic class 2 to which the pixel belongs

generic class 3 to which the pixel belongs

specific class to which the pixel belongs

worth to acquire

cost/risk/worth to traverse

worth to defend

worth to destroy

worth to defeat

Figure 21. Attribute, entity, class, and value images. The result of image processing is to compute a set

of images that are registered with the original retinal image. Value images represents information that is

needed for setting priorities and making behavioral plans and decisions.

Attribute images add information to the signals generated by the retina so as to increase

the information content at each pixel. Attribute images can be computed in parallel and exist

simultaneously in registration with the original image. Pixels with similar attributes can be

grouped into entities. When a pixel is grouped into an entity, it is assigned the name of the

entity. This produces an entity image.

Df. An entity image is a two-dimensional array of entity names.

An entity image is an array of names that define for each pixel the entity to which that

pixel belongs. Each pixel in an entity image is either contained within the entity, or contains the

entity (if the image of the entity is smaller than a single pixel). An entity image is much like a
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“paint by numbers” drawing where each region in the image contains the name (or identification

number) of the color to be painted into that region.

The name assigned to each pixel in an entity image is a pointer to an entity frame that

contains the attributes of the entity. Entity attributes are characteristics and properties of the

whole region occupied by the entity. Entity attributes can be computed by integrating the

attributes of the pixels belonging to the entity [Adelson and Movshon82].

Entities with similar attributes can be grouped into higher-level entities. Grouping is

inherently a hierarchical process that occurs at every level of the sensory processing hierarchy.

Pixels can be grouped into list entities. List entities can be grouped into surface entities. Surface

entities can be grouped into object entities. Object entities can be grouped into group entities.

At each level of grouping, each pixel acquires a new entity pointer that points to an entity frame.

Thus, each pixel acquires a set of entity names that point to the set of entity frames to which the

pixel belongs. This produces a set of entity images as shown in Figure 21.

An entity image segments the input image into a set of regions, or windows, over which

entity attributes can be computed. Computed entity attributes can then be compared with class

attributes stored in a library of class prototypes in the KD. When computed entity attributes

match the attributes of a class prototype, the observed entity can be classified or recognized as a

member of the class. When an entity is classified, the pixels that are labeled with the entity name

can be assigned the class name of the entity class. This produces a set of class images as shown

in Figure 21.

Df. A class image is a two dimensional array of entity class names.

An entity class name specifies, for each region in an entity image, the class of the entity

that occupies that region. Class images may designate generic or specific classes, or both.

Df. A value image is a two dimensional array of cost/risk/worth values.

Entity classes can be assigned values that specify the worth of entities in that class, or the

cost or risk of carrying out action on them. Cost/risk/worth values of entities can be assigned to

the pixels contained in the entity class image. This generates a set of value images such as

shown in Figure 2 1 . These can be used for planning behaviors in the image or map domain. For

example, worth values assigned to entity classes can be used to define priorities for tasks

designed to acquire them. Cost/risk values assigned to regions of terrain can be used for

planning paths that traverse them. Worth assigned to assets can define how much they are worth

to defend. Worth assigned to targets can specify how valuable they would be to destroy. Worth

assigned to opponents can define how much it is worth to defeat them. Value images enable

plans to be formulated in the image domain using the mathematics of computational geometry

[Koenderink90]
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4.4.5 Images and Frames

Figure 22 shows the relationship between entity images and entity frames. On the left is

a set of attribute and entity images. A surface entity image is shown that contains three surfaces

(including the background). For each pixel in the surface entity image, there is a pointer to the

surface entity frame to which the pixel belongs. There also exists a pointer from each entity

frame back to the entity image in which the pixels that belong to that entity are located. This

two-way linkage between entity images and entity frames enables computation in both the

symbolic and image domains. For example, an entity image can be used as a mask or window
for focusing attention or correlating observed entity attributes with predicted entity attributes.

An entity image can also be used as an integration window for integrating pixel attributes to

obtain entity attributes.

Figure 22. Relationship between entity images and entity frames. In this example, a pointer for each

pixel in a surface entity image points to the frame of the surface entity to which that pixel belongs. The

entity frame contains properties of the entity including attributes, state, class, value, relationships, and

behavior.

If a pixel is not assigned to an entity, it can be designated as a background pixel, or as

unknown. Background pixels are those that require little or no additional processing. Unknown
pixels may or may not be selected for additional processing, depending on whether the contents

of the region of space in the world that they represent is considered to be important to the current

task.
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4.4.6 Image Field of View

A TV camera has a field of view that is determined by the focal length of the lens and the

size of the photosensitive array. The image resolution is defined by the number of photosenors

in the array and by the quality of the optics. A two dimensional image array can be represented

as a flat plane such as a typical photograph or the view through a flat window pane. An image

can also be represented as a section of a spherical surface seen from the center of the sphere such

as a portrayal of the sky in a planetarium, or the actual view of the sky on a clear night.

For a small field of view, there is little difference between a planar or spherical

representation. However, for wide field of view images, the spherical egosphere representation

is preferable to the flat plane representation. For a vision system on an unmanned ground

vehicle that may need to pay attention to entities and events in many different directions (front,

back, right, left, and overhead), a planar coordinate system has several undesirable properties. A
planar representation goes to infinity at ninety degrees to the right and left (or up and down), and

cannot represent the hemisphere behind the camera at all. On the other hand, the egosphere is

continuous and isotropic in all directions. For example, it is easy and natural to represent the

stars and planets in the sky at night as if they were etched on a celestial sphere. Astronomers and

navigators routinely use the celestial sphere representation for mapping the heavens and

computing position on the earth from star sightings in the sky.

Df. An egosphere is a spherical coordinate system with the self (ego) at the origin.

The egosphere is the most intuitive of all coordinate systems. Each of us resides at the

origin of our own egosphere. Everything that we observe in the world can be described as being

located at some azimuth, elevation, and range measured from the center of ourselves. To the

observer at the center of the egosphere, the world is seen as if through a transparent sphere. Each

observed point in the world appears on the egosphere at a location defined by the azimuth and

elevation of that point. There is, in fact, no way for a single stationary eye to tell whether a

scene being viewed is real, or an image projected on an egosphere with resolution equal to or

better than that of the eye.

The orientation of the egosphere can be uniquely defined by specifying two orthogonal

directions. Typically these are chosen to define the pole (which in turn defines an equator 90°

away), and a zero azimuth on the equator. A number of different egosphere coordinate frames

are useful for representing the world. These include the sensor egosphere, the head egosphere,

the body egosphere, the inertial egosphere, and the velocity egosphere. [Gibson50]

Df. A sensor egosphere is an egosphere where the horizontal axis of the sensor array

defines the equator of the egosphere and hence the pole. The center pixel in the

sensor array defines a zero azimuth on the equator.

Figure 23 shows a sensor egosphere for a TV camera. The optical axis defines zero

azimuth and elevation on the egosphere. The gray area around the optical axis is the field of

view. The equator of the egosphere is defined by the horizontal line of pixels through the center

of the image. The x-axis is horizontal to the right in the image. The North pole of the egosphere
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is defined by “up” in the image. The position of each pixel in the image is defined by its azimuth

and elevation on the egosphere. Each pixel can be assigned a range attribute whose value is the

estimated distance to the point from the center of the egosphere.

Figure 23. A sensor egosphere for a camera. The center of the imaging lens lies at the center of the

sphere. The optical axis of the camera defines the zero point on the equator. The orientation of the

photodetector array defines the z-axis. Each pixel has a unique azimuth and elevation. The field of view of

the array covers a region on the egosphere.

Each eye has its own egosphere. Attributes measured by each eye can be transformed

into a head egosphere by one translation and one rotation. Head egosphere coordinates can be

transformed into torso and limb coordinates, and then into muscle coordinates by additional

translations and rotations. All of these transformations are well defined so long as there is a

good range estimate at each pixel. Dickmanns [99] describes the various coordinate frames and

transformations relevant to a vision system used for driving an autonomous vehicle.

Range can be measured directly by LADAR, radar, or sonar; or can be computed from a

wide variety of parameters including ocular vergence, stereo disparity, motion parallax, image

flow, shading, texture, occlusion boundaries, position in the image, and estimates of size and

speed.

For an acoustic system, the direction, intensity, frequency, and other attributes of

incoming sound can be represented on the head egosphere. For tactile sensors, the location and

qualities of sensed surfaces can be plotted in head egosphere coordinates. The head egosphere

thus provides a convenient coordinate frame for fusion of information from vision, hearing, and

touch.

A polar egosphere coordinate system suffers from singular points at the poles. The effect

of these singularities can be minimized by placing the poles on the vertical axis so that they are
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far from the center of the field of view. On the other hand, the pole singularities can sometimes

be used to advantage, as in the case of the velocity egosphere.

Df. A velocity egosphere is an egosphere where the velocity vector defines the pole of

the egosphere and azimuth is defined relative to the current acceleration vector.

Figure 24 shows a velocity egosphere. The velocity vector defines the pole of the

velocity egosphere. The projected image of each point lying on a stationary surface in the world

moves along a great circle arc radiating from the pole of the velocity egosphere.

Figure 24. Two views of a velocity egosphere. On the left is a perspective view from the upper right

side. On the right is a view along the velocity vector from the center. The velocity vector defines the pole

of the velocity egosphere, and that corresponds to the focus of expansion of flow vectors for stationary

points in the image.

For constant velocity, the images of stationary points in the environment move on the

velocity egosphere at an angular rate given by the simple formula [Gibson, Olum, and Rosenblatt

1955]:

da/dt = (v sin a) / r

d(3/dt = 0

where:

a = the angle between the velocity vector and the pixel on the velocity egosphere

v = velocity of the camera through the world

r = range to the point in the world

(3 = azimuth of the pixel relative to the intersection between the plane normal to the acceleration

vector and the equator of the velocity egosphere

Note the simple relationship between range, velocity, and a. Note also that this

relationship is independent of (3. This simplifies the problem of distinguishing between optical

flow resulting from self motion and optical flow resulting from object motion.
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Additional egosphere representations are the body and inertial egospheres.

Df. A body egosphere is an egosphere where the roll axis of the body defines zero

azimuth and elevation, and the yaw axis defines the pole.

Df. An inertial egosphere is an egosphere where the Earth ’s gravity vector defines the

equator and North defines a zero azimuth.

The body egosphere is useful for local path planning for mobility or manipulation. The
inertial egosphere is useful for global path planning and for transformations to and from world

map coordinates. The inertial egosphere provides a stabilized internal representation of the

world independent of rotation of the sensory array. Figure 25 is a top view of several egosphere

representations showing the difference in azimuth between the head egosphere, the head-inertial

egosphere, the sensor egosphere, a pixel ray, and the self velocity vector.

Figure 25. A 2-D top down projection of four egosphere representations illustrating angular relationships

between egospheres. Pixels are represented on each egosphere such that images remain in registration. Pixel

attributes detected on one egosphere may thus be inherited on others. It should be noted that pixel resolution is not

typically uniform on a single egosphere, nor is it necessarily the same for different egospheres, or even for different

attributes on the same egosphere [Albus 90],

Figure 26 shows a Mercator projection of the human head egosphere with the field of

view of both right and left eyes shown. The foveas of the two eyes are converged on the top of a

rock directly ahead. Central vision for both eyes overlaps and provides good stereo depth

perception for objects less than about 50 meters (m) away. This means that range measurements

are available for those pixels within central vision. Peripheral vision does not completely

overlap, due mostly to blockage of the contra-lateral field of view by the nose. Near the edges of

peripheral vision, resolution is low and recognition based on color and shape is poor, but

perception of motion remains good. The example in Figure 26 is for a vehicle driving task. The

rock directly ahead is a potential obstacle that needs to be examined. Thus, the high-resolution

foveal regions of both eyes are converged on the highest point of the rock. This enables high

magnification and good range measurements of the top of the rock.
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In Figure 26, the size of the human fovea relative to the peripheral field of view and to

the entire egosphere is to scale. This illustrates that the fovea is essentially an optical probe that

is pointed by an attention mechanism at the current most important part of the world. About one

third of the pixels in the entire visual field are concentrated in the fovea. A second third of the

pixels fill the region marked as central vision. The remaining third are distributed over the

peripheral visual field. The relative density of pixels in human vision decreases roughly

exponentially with the angle between the fovea and a pixel.

Head Egosphere

degrees azimuth

Figure 26. A Mercator projection of the head egosphere showing the field of view of foveal

and peripheral vision and a number of objects in the world. The two eyes are verged on the top of

the rock straight ahead.

4.4.7 Maps

A map is a two-dimensional array of attributes and entities that are scaled to, and

registered with, known locations in the world.

A world map consists of a vertical projection of the surface of the earth onto the planar

surface of a world map. When the position and orientation of the self is known in the world and

range can be measured or estimated at each point in the visual field, it is possible to transform

images from egosphere coordinates to egocentric map coordinates, and thence to world map
coordinates. This makes it possible for entities observed in the image to be overlaid on a priori

information in the world map. For example, images acquired by cameras are often transformed

into world map coordinates for planning routes.
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If terrain elevation data is available in the world map, it is also possible to transform

world map information back into egosphere coordinates. Typical world map coordinates are

latitude and longitude. World map coordinates have the advantage that stationary features on the

ground do not move on the map when the self moves. Instead, the location of the self moves on

the map. Thus, when stationary objects observed on the egosphere are transformed into world

map coordinates, they become stationary on the map regardless of motion of the self. Thus, even

though images of stationary objects move over the egosphere as the self moves through the

world, repeated sightings of stationary objects from various view points can be integrated into a

single representation on the world map. For this reason, images from cameras are typically

transformed into world map coordinates to facilitate global planning of routes for moving

through the world.

Attributes of map pixels may describe the characteristics of the terrain contained within

the pixel. Map pixel attributes may include type of ground cover, terrain elevation relative to the

sea level or relative to the vehicle, and terrain roughness, slope, and traversability. Map pixels

may also include names of, or pointers to, icons that represent entities such as buildings, roads,

bodies of water, or landmarks that the pixel covers, or of which the pixel is a part. Maps
typically have a number of overlays that are registered with the map. Each overlay may
represent one or more attribute or entity maps [Tomlin90]. For example, map overlays may
represent roads and towns, rivers and lakes, buildings and landmarks. They may also represent

topographic elevation and contours of constant elevation, as well as fields, woods, swamps,

water, and sand. Map overlays can represent the surface roughness, the slope, or traversability as

a function of direction at each pixel, and which regions are visible from a particular viewpoint.

Battlefield map overlays can represent the deployment of friendly and enemy troops, the

coverage of artillery, the location of mines, or the position of sector lines.

Military maps with multiple overlays are typically made available to soldiers as prior

knowledge for military missions. However, a priori maps are too low in resolution to be used by

autonomous vehicles for obstacle avoidance, and too static and stale to be used to analyze and

anticipate the behavior of moving targets. Most military maps have elevation postings at 30 m
grid intervals. In special cases, maps with elevation postings every 3 m or even every one meter

may be available, and vector representation of features such as buildings, roads, and landmarks

may be included with greater precision. But the time delay between when the terrain is sensed

and the maps are available in the world model for decision making and control is at best minutes

to hours, and more often days to weeks. A priori maps cannot provide the dynamic information

necessary to track and predict moving objects in the world.

High resolution dynamic information must be generated from real-time sensory data. In

the vicinity of the cameras, LADAR and stereo systems can provide range information in

egosphere coordinates accurate to a few centimeters. This information can be used to build local

terrain maps in real time and to represent moving objects. When the position and orientation of

the camera egosphere is known, local maps generated from camera data can be registered with a

priori maps. This enables landmark recognition and provides the information needed for path

planning and task decomposition. Images in egosphere coordinates can be transformed into

maps in world coordinates for route selection, path planning, and obstacle avoidance. A priori

maps can also be transformed into egosphere coordinates so that terrain features and elevation
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can be transformed into a sensor viewpoint so that names and attributes of entities are overlaid

on camera images. For example, the name of a landmark or a road can be overlaid on the image

of the landmark or road. Attributes of a region or entity, such as its traversability, or its value as

a target or a resource to defend, can be overlaid on the image of the region or entity. This

enables image based task planning and target selection to be performed directly in egosphere

coordinates.

There are many issues related to the computational power required for real-time image

processing, and for transformation of pixels from image coordinates to map coordinates and vice

versa. The 4D/RCS reference model architecture addresses these issues by limiting the range

and resolution of images and maps in the world model at each level of the hierarchy, and by

focusing attention on important regions on the egosphere. Both of these approaches reduce the

number of map pixels that require updating at each level. At each hierarchical level, maps have

less resolution but greater range than at the level below. At each level, maps have more

resolution but less range than at the level above. RCS methodology uses a heuristic (rule of

thumb) that range increases about an order of magnitude and resolution decreases by an order of

magnitude at each higher level. Thus, the information density on maps in the world model

remains relatively constant across levels. This produces an exponential increase in resolution

and decrease in range in the space-time egosphere that can be seen in the planning maps shown

in Figure 7. Planned waypoints at higher levels are larger (lower resolution) and further apart

(longer range) than planned waypoints at lower levels. Thus, plans for actions that are closer in

space-time are more detailed and immediate than those that are more distant in space-time.

4D/RCS also supports the use of foveal/peripheral cameras to limit the number of pixels

in the image. For example, it is possible to represent a full 4 k steradian egosphere field of view

with resolution of 1° per pixel with less than 42,000 pixels. A 32 x 32° field of view can be

represented by a 256x256 image with resolution of 0.12° per pixel. A 4 x 4° field of view can be

represented by a 256x256 image with resolution of 0.016° per pixel. This is better than human
20/20 vision. A LADAR might have only about 8000 pixels with resolution of about 0.5° per

pixel. A radar map of the ground may contain about 30,000 pixels. All of these egosphere

representations put together require less than the number of pixels in a single 512x512 image.

Moreover, not all pixels need to be processed in real time. Attention mechanisms can

mask out pixels that are irrelevant to behavioral goals. This may reduce the number of pixels

that require real time processing by as much as an order of magnitude. Thus, the total number of

image pixels that must be processed at frame rates may be less than 100,000. To achieve real-

time processing rates of ten frames per second may require processing of less than a million

pixels per second. For modem image processing technologies, this is not an impractically large

computational load.

4.4.8 Events

Df. An event is something with distinctive temporal structure that occurs during a

period of time.
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In computer science, switching theory, and discrete event systems, an event is defined as

a change in state that occurs instantaneously in zero time. However, an instantaneous event is an

artificial construct designed to simplify mathematical computation. In the real world nothing

occurs instantaneously, albeit time intervals can be as short as nature mandates. State changes in

atoms and molecules may occur in picoseconds. State changes in electronic circuits occur in

nanoseconds. State changes in mechanical systems occur over periods of milliseconds or

seconds. An event such as an earthquake may occur over a period of minutes. An event such as

a wedding or a funeral may occur over a period of an hour. An event such as a concert or ball

game may take several hours. An event such as leaves turning color in the fall may take place

over days or weeks. An event such as the decline of the Roman Empire may occur over a period

of more than a century. An event such as the extinction of the dinosaurs may take thousands of

years. The common feature among all events is that they occur over an interval in time and

involve some change in state.

When we observe the world we perceive events. With our ears we perceive clicks, notes,

words, and melodies. We perceive birds singing, cats meowing, dogs barking, crickets chirping,

babies crying. We perceive traffic noises. We attend concerts and listen to lectures and debates.

With our eyes we perceive patterns of movement. We see waves on the water. We see trees

swaying in the breeze. We see patterns of motion in the ballet, in sporting events, and in human
gestures. These patterns of movement can be temporally grouped and segmented into events.

Events can have names and attributes and can be related to other events. Patterns of events can

be grouped into higher level events. Just as entities can be represented symbolically by entity

frames, so events can be represented symbolically by event frames.

What an entity is to space, an event is to time. An entity occupies a region in space. An
event occupies an interval in time. An event may occur at a point or during a period of time,

depending upon the resolution of the clock. For example, the event of a light bulb turning on

takes place over a period of tens of milliseconds as the filament heats up. The light bulb can be

considered to turn on at a point in time if the system has a clock that samples the environment

only once per second. However, if the system samples every millisecond, the light bulb turning

on is an event that takes place over an interval, a number of sample periods.

Just as there are external and internal entities, there are external and internal events. An
external event is a situation or state change that occurs in the real world. Examples include a

rifle shot, a tree falling, an airplane crash, and a performance of a maneuver or tactic. An
internal event is a data structure in the observer's knowledge database. An internal event may be

the detection of a muzzle flash, the recognition of an acoustic signature, a data structure

representing a relationship between objects in an image, or a state variable indicating the

achievement of a goal in a task. Just as entities can be represented symbolically by entity

frames, so events can be represented symbolically by event frames.

Df. An event frame is a data structure that contains the event name, a list ofattribute-

value pairs, a pointer to a parent event, and pointers to subevents.

An event frame contains the information that the intelligent system knows about an event.

Figure 27 shows an example of an event frame.
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NAME = event_id (uncertainty) // this is the frame address h the KD

//attributes - these are characteristics thataddress the question What?

amplitude = magnitude of variations

shape = time-frequency pattern, amplitude waveform, symmetry
spectrum = Fourier transform ever the a/ent

//state - tiese are dynamic properfes thataddress the question When?
boundaries = start-end times

trigger = proximal cause of the event

length = duration of the event

// class - pointer to the channel and class or classes to which the event belongs

channel = signal pathway where Ihe event was detected

generic_class1 = pointer to genaicl class exemplar

generic_class2 = pointer to genaic2 class exemplar

specrfic_class = pointer to specific class exemplar

//value - worth of the event

benefit of event = value

cost of event = value

//pointers that define grouping relationships

belongs_to = parent event

has_part = subeventl

has_part = sube\ent2

has_part = subevent3

//pointers thatdefine srtuatbnal relationships

prior state = condtions prior to the e/ent

effect - condtions resulting from fie event

participant = entities hvolved in or affected by the event

//functions that define behavior

responds_to

actsjike

Figure 27. The structure of a typical event frame. Each event frame consists of a name, a list of

attributes, and a set of pointers to other events.

The event name is an address or index by which the event frame can be accessed in a

database or library of events, or to which other event and entity frames can be linked. An
uncertainty parameter can be associated with the name to indicate how certain the system is that

the event has been properly identified. The event frame contains event attributes that describe

attributes such as amplitude, shape, and spectrum. Event attributes may also characterize the

event as an impulse, a string of impulses, a frequency, or a pattern of frequencies on a channel or

set of channels.

Event state-variables describe dynamic properties such as start-end times, trigger, and

length of the event. Uncertainty parameters can be associated with state parameters to indicate

how dependable the estimates of these values are.

The event frame may contain pointers to the signal channel on which the event was

detected and to the class or classes to which the event belongs. For example, an event may have

a generic class pointer that identifies it as a click, note, word, or melody. Generic events are

events that have been classified but are not unique. Examples of generic event classes include
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shots, chirps, words, speeches, ball games, and wars. Generic classes of events include point

samples of sensory signals, and strings of samples that make tones. A fork event might be a

point in time when two instruments begin to play two voices. A joint event is a point where a

duet becomes a solo. A time-frequency patch might be a sonogram of a musical chord or a

speech phoneme. A boundary might be a partition between words or notes. A time-frequency

surface might be a portion of an orchestral performance in which many instruments are playing

many different parts simultaneously over a period of time. A specific class pointer may identify

it as a particular word or melody. Examples of specific events include the shot that killed JFK,

the string of words spoken by Neil Armstrong when he first set foot on the moon, and a specific

concert by the Boston Pops.

The event frame may contain value attributes that define the cost or benefit cost of the

event. The event frame may contain pointers that define inheritance relationships with other

events. Each event frame has a pointer to the frame of a parent event of which it is a part, and a

set of pointers to frames of sub-events that are its parts. For example, a word event may have a

parent_pointer to the phrase or sentence to which the word belongs. It will have a number of

subevent_pointers to the frames of the phoneme that are its parts. Inheritance pointers are

established and maintained by grouping and classification operations performed by sensory

processing functions.

The event frame may also contain pointers that define situational relationships such as

prior conditions, effect, and entities that are involved in or affected by the event. Event effects

may include changes in state produced by the event. A state change may be a change in position,

orientation, velocity, color, temperature, size, or shape of entities in the world. State changes

may also be changes in a signal from a sensor, or the occurrence of a string or pattern of signals.

It should be noted that two or more events may result in no net change in state. For example, the

signal on a wire may change state from a “0” to a “1”, and then change back to a “0”. The net

change is zero, but the historical record contains two transition events (or one “square pulse”

event.)

An event frame may include a set of functions that describe what causes the event to

occur under certain conditions or in response to certain stimuli. Behavioral functions and

parameters may be inherited from generic or specific class prototypes.

Event frames contain pointers that define a taxonomy of grouping relationships. Each

event frame has a pointer to the frame of a parent event of which it is a part, or to which it

belongs. Each event frame also contains a set of pointers to frames of subevents that are its

parts, or that belong to it. A level 4 event frame has a parent_pointer to the level 5 event frame

to which it belongs. It has a number of subevent_pointers to the level 3 event frames that are its

parts. Each level 3 event frame has a parent_pointer to the level 4 event frame to which it

belongs, and a set of subevent_pointers to the level 2 event frames that are its parts. Each level 2

event frame has a parent_pointer to the level 3 event frame to which it belongs, and a set of

subevent_pointers to the level 1 events that are its parts. Each level 1 event has a parent_pointer

to the level 2 event frame to which it belongs. All of these pointers are established and

maintained by grouping operations that are performed by sensory processing functions discussed

later.
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Event frames may stand alone as data structures, or be linked to form lists, strings, words,

sentences, networks, and maps. Named event frames may be used to describe what happens in

the world. In language applications, event attributes may serve as adjectives that describe

characteristics of the events to which they are attached.

Event frames can be interconnected by pointers to form causal, semantic, and situational

networks. Situational networks may represent situations or temporal relationships such as

“before,” “after,” or “simultaneous-with.” Situational networks may also have pointers to maps

or images that pictorially display temporal relationships. Causal networks represent the cause-

and-effect relationships between events, situations, and actions that occur in the world. Semantic

networks represent the relationships between events, attributes, situations, and actions. Semantic

networks define meaning and enable reasoning, logic, and language.

4.4.9 Event Grouping

Just as subentities can be grouped into entities in space, subevents can be grouped into

events in time. For example, a series of acoustic signal values can be grouped into a phoneme.

A series of phonemes can be grouped into a word. A series of words can be grouped into a

sentence. A series of sentences can be grouped into a paragraph, or concept in a speech. Figure

28 illustrates the temporal grouping of subevents into events.

Event frame grouping defines temporal relationships such as “before,” “after,” and

“simultaneous.” Events frequently serve as triggers for action on the part of an intelligent

system. The interconnecting pointers between event frames and entity frames can produce

semantic, causal, or situational networks that define a historical record. Semantic and causal

networks define meaning and causality.
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A parent_event

Figure 28. Grouping of subevents into events along the time line. Event frames contain pointers that

define a hierarchy of grouping relationships. The event grouping hypothesis generates for each event frame

a set of pointers to frames of subevents that are its parts, or that belong to it. Event grouping also produces

for each event frame a pointer to the parent event of which it is a part, or to which it belongs. Each event

frame may also contain pointers to entities that participate in the event.

4.4.10 Timing

Figure 29 is a diagram of the temporal relationships involved in representing the time

line. The most obvious thing about time is that is flows in one direction and there is a unique

point called the present that divides the past from the future. We can choose the origin of the

time line (where t = 0) to be the present. To the right is the future. To the left is the past. The

present is the 0
th

tick of the clock that separates the future from the past.
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HIERARCHY OF TEMPORAL
RANGE AND RESOLUTION

HISTORICAL
TRACES

FUTURE
PLANS

Events of the

short term ~ 20 hr

memory

short term ~ 2

memory

short term ~ 10 i

memory

Plan for the day

/LA -20 hr planning

horizon

2 hr planning

horizon

short term ~ 50 sec

memory

10 min planning

horizon

50 sec planning

horizon

short term ~ 5 :

memory

short term ~ 500 mse

memory

~5 sec planning

horizon

msec planning

horizon

short term 50 msec

memor msec planning

horizon

sensory sample interval = 5 msec output update interval = 5 msec

T=0
ACTUATOR DRIVE

Figure 29. A timing diagram for 4D/RCS showing the temporal range and resolution for planning and short term

memory at different hierarchical levels. Planned events are indicated by the intervals between open triangles on the

right. Detected events are indicated by intervals between filled triangles on the left.
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It can be observed in Figure 29 that there is approximate symmetry between future plans

and historical traces. At each level, tasks are decomposed into plans consisting of a string of

subtasks that take place over time. Each task begins with a starting state and terminates when the

goal is achieved. Similarly, at each level, a string of subevents that take place over time are

grouped into events. Each event begins at a point in time and terminates when the event is

complete. As time flows, task plans are executed and events are observed.

In the 4D/RCS architecture, different levels in the hierarchy represent knowledge with

different range and resolution in both space and time. At each level, subevents are grouped into

events along the time line in much the same way that subentities are grouped into entities in the

spatial domain. As a rule of thumb based on symmetry, the historical period over which events

are stored in short term memory is roughly equal to the planning horizon over which plans are

made for the future. At each level, the resolution in time is such that less than ten subgoals for

each agent are required from the real-time planner. Similarly, the resolution of the historical

trace is such that only about ten subevents from each observer are grouped into each event.

At the input to the servo level, each sample of a signal is an event. At the output of the

servo level, an event might be the detection of a phoneme, or motion in an image. At the output

of the primitive level, an event might be the detection of an acoustic signature, or the recognition

of a pattern of movement in an image. At the output of the subsystem level, an event might be

the traversal of an intersection or the avoidance of an obstacle. At the output of the vehicle level,

an event might be the crossing of a bridge or the entering of a village. At the output of the

section level, an event may be the crossing of a valley, or the establishment of an observation

post.

4.4.11 Temporal Persistence of Representation

In order for an intelligent system to make the most efficient use of the available time,

computational power, and memory capacity, it is useful to partition the knowledge database into

at least three parts. The first is immediate sensory experience. It consists of the current input,

the current estimated state and attributes of entities, and predictions based on the current

estimated state. The second is short-term memory. It consists of a historical record of the recent

past. At each level of the 4D/RCS hierarchy, a record of events is preserved that extends into the

past about as far as the planning horizon extends into the future. The third is long-term memory.

It consists of the entire store of knowledge acquired by the intelligent system over its lifetime.

Immediate Experience

Immediate experience is rich, vivid, and dynamic. Visual images of the real world are

complex and full of color and motion with three-dimensional perspective. Auditory experiences

have a wide range of frequency and intensity attributes with a sense of direction based on

amplitude and phase differences between the two ears. Tactile experiences can convey rich

sensations of temperature, vibration, pressure, and texture that, when combined with

proprioception, can provide a sense of position, velocity, and force.
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However, the richness of detail in the immediate experience is transient. It disappears as

soon as the camera switches viewpoints, or the sound stops, or tactile sensors lose contact with

the environment. All that remains of immediate sensory experience after the stimulus is

removed are memories consisting of symbolic information that was specifically noticed during

the experience and transferred into short-term memory.

The data structures that support immediate experience are those necessary for image

processing, signal detection, recursive estimation, and model-based predictive filtering. These

include:

• Observed signals, attribute images, and states. These consist of the current array of

signals and images from sensors and the attributes and states that can be directly

computed from sensory signals.

• Estimated signals, attribute images, and states. These are the output of filtering

processes that integrate information from observed images and other sources over the

filter space-time interval.

• Predicted signals, images, attributes, and states. These are the system’s best guess of

what the next sensory input of signals and images will be, based on the latest estimated

state-variables, the known system dynamics, and the effects of known control outputs.

These representations of immediate experience exist concurrently with the sensory input

and disappear with it as well. None of these representations persist for more than a few

milliseconds after the stimulus ceases.

Short-term Memory

Short-term memory differs from immediate experience in that it provides a temporal

recirculating record of events that persists for some interval after the sensory input disappears.

Short-term memory can store sequences such as a series of events, a string of words, an acoustic

signature, the path of an entity through space, or the trajectory of an attribute vector through

state-space. Short-term memory provides the temporary storage required for processing strings

of events, performing time and frequency analyses, and recognizing or detecting temporal

patterns. At each level in the 4D/RCS hierarchy, short-term memory preserves a historical

record of events that stretches into the past about as far as the planning horizon at that same level

reaches into the future. This is illustrated in Figure 29. Short-term memory maintains a

temporary list of events and participating entities. These constitute the current focus of attention.

Entities and events can be specified by the BG process as important to the current or next

planned task. Entities and events can also be flagged by SP/WM/VJ as particularly note-worthy.

Entities-of-attention may be used by SP to generate spatial masks and grouping hypotheses for

images. Events-of-attention can generate temporal windows and segmentation hypotheses for

acoustic signals. State variables and entity images of entities-of-attention provide targets for

pointing cameras and other sensors

Short-term memory differs from long-term memory in that it is dynamic. Short-term

memory retains information only so long as it is relevant to the current focus of attention. When
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the focus of attention shifts, short-term memory is overwritten with new information. What was

previously stored in short-term memory is lost.

Entities and events in long-term memory can be selected by task-driven attention

functions to be transferred into short-term memory where they become entities and events of

attention. Attributes of entities and events in short-term memory can be compared with

attributes of entities and events observed in immediate experience. Correlation and differences

between short-term memory and immediate experience enable signal detection, recursive

estimation, predictive filtering, grouping, and image segmentation processes.

Comparison between entity and event attributes in short-term memory and entity class

attributes derived from long term memory also support recognition and classification processes.

Classification occurs when entity attributes in geometrical entity frames match or correlate with

entity attributes in entity class frames. By this means, a geometric entity or spectral event

detected in immediate experience can be classified or recognized as corresponding to a generic

or specific entity class or event class prototype stored in long-term memory.

Entities and events detected in immediate experience, and selected by attention functions

to be transferred into short-term memory, can from there (if deemed noteworthy by the Value

Judgment system) be stored in long-term memory for future use. By this process, long-term

memory can be kept up-to-date. Entities and events deemed not noteworthy are lost as soon as

short-term memory is overwritten by subsequent input.

Long -Term Memory

Long-term memory is a repository of information that can accumulate and be retained

over indefinite periods of time. Long-term memory contains the entire dictionary of entities and

events about which the intelligent system has information. Long-term memory differs from

short-term memory in that information endures even through power outages or system shut

down. The amount of information that can be stored in long-term memory is very large. Long-

term memory is analogous to disc storage media. In biological systems, long-term memory
contains only symbolic information. Images or maps are represented only roughly, if at all.

Computer systems, however, are not subject to the same constraints as the biological brain.

Mass storage technologies such as hard discs and CD ROMs can be used to store images in long-

term computer memory. In the 4D/RCS, long-term memory will contain maps, drawings, and

prototype images of generic and specific entity classes. The Demo HI vehicles also sometimes

carry video recording devices to store sequences of images from selected portions of missions.

Among the most important information in long-term memory for Demo III vehicles are

digital terrain maps with overlays that provide information about roads, buildings, towns, rivers,

and deployment of friendly and enemy forces. Using GPS or landmark recognition techniques,

maps generated from sensed images can be registered and merged with stored maps for use in

path planning and to assist in image processing. Local map information gathered from sensory

input can also provide real-time updates to digital terrain maps stored in memory. Map updates

may be shared with peer vehicles, with human operators, and with high-level digitized battlefield

databases.

116



ID EVENT CLASSES

name
size

texture

shape

color

has_part1

has_part2

classes

LONG TERM MEMORY 1 .2 billion bytes

STORED ENTITY Af

100K entity and event

100 million bytes

LAWS OF PHYSICS
RULES OF MATHEMATICS
RULES OF GRAMMAR
10 million bytes

SENSOR-BASED
LOCAL MAPS

planning

risk

LOS visibility

ground cover

traversibility

roads

terrain

obstacle

1 .2 million bytes

1000 classes

100K bytes

ENTITY and EVENT CLASSES
OF ATTENTION

name
size

orientation

texture

shape

color

has_part1

has_part2

SHORT TERM MEMORY

14 million bytes

IMMEDIATE EXPERIENCE

24 million bytes

Figure 30. Data structures in immediate experience, short term, and long term memory. Images and

geometric entity frames reside in immediate experience. The set of expected entity class frames reside in

short term memory. The library of generic entity class frames reside in long term memory. High

resolution local maps reside in short term memory and are constantly updated from immediate experience.

The topographic map database resides in long term memory and is updated from short term memory only

infrequently for noteworthy entities.
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Long-term memory may also be used to store task knowledge such as libraries of plans,

and models that can be used for simulation of plans. Figure 30 illustrates the images and

geometric entity frames that are a part of immediate experience, the set of generic entity class

frames that reside in short term memory, and the library of generic entity class frames in long

term memory.

4.4.12 Knowledge of Rules of Mathematics and Logic

The knowledge database contains rules of mathematics and logic that can be expressed in

formulae such as differential equations, production rules, statements in propositional or predicate

calculus, or rules of arithmetic and geometry. These are symbolic representations that describe

the way the world works and how objects, events, and actions relate to each other in time, space,

causality, and probability. Most mathematical and logical functions can be expressed by rules of

the form

IF (input) THEN (output)

If the input is a proposition or predicate, the output can be the truth value of the

proposition or predicate. If the input is a symbolic string, the output can be another string.

If the input and output are single valued real numbers, the rule

If (x) THEN (y)

becomes

y = f(x)

If the input and output are vectors, the rule

IF (X) THEN (Y)

becomes

Y = H(Xt )

where H is a transformation matrix.

In a digital computer, rules of mathematics and logic are typically represented in a form

that can be solved by numeric or symbolic algorithms. In the brain, rules can be represented by

functional mappings implemented by neural nets. In general, a function is defined as a

relationship between an input and output. Thus, at least in principle, any one-to-one or many-to-

one functional mapping can be represented by a table look-up where the input is the address of

the location in the table where the output is stored. In other words, if the input is an address of a

memory location, the output is the contents of the address. If the output is a value, then the rule

returns a value. If the output is another address, then the rule returns a pointer to another

location.
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This suggests how rules of mathematics and logic can be implemented by neural

mechanisms. The input to a neural net can be considered the address of a location in look-up

table. The neural net output is then the contents of the look-up table. For example, a CMAC
(Cerebellar Model Arithmetic Computer) or a multilayer neural net can implement any relatively

smooth nonlinear function of a small number of input variables. [Albus75a, b]

Of course, there are practical limitations to the representation of mathematical functions

by table look-up. These limitations are typically related to the dimensionality and resolution of

the input space and to the precision required of the output. There are corresponding limitations

to the ability of the brain to store and recall functional relationships. These limitations can

sometimes be resolved by interpolation or averaging over a large population of fuzzy mappings.

However, the more general solution is to invoke a numerical procedure or symbolic algorithm.

Most humans solve complex problems in mathematics or logic, not by learning all possible

input-output relationships, but by learning procedures to perform numerical or symbolic

processes.

4.4.13 Knowledge of Rules of Physics

Rules of physics are typically expressed in mathematical formula such as differential

equations that describe the relationships between force, mass, and acceleration, velocity, and

position. These may be embedded in predictors, simulators, and control laws used for recursive

estimation, planning, and control. Most rules of physics can also be formulated in terms of

IF (input) THEN (output)

and, hence, can be represented either by equations in digital computers or by table look-up in

neural nets. For everyday experience such as running, jumping, throwing and catching a ball, or

driving a car, humans learn what to expect from the environment by trial and error. This is the

type of knowledge that can be stored and retrieved by neural nets in table look-up form. For

more complex or less intuitive problems, procedural methods are typically invoked.

Knowledge of physics may include knowledge embedded in structural or dynamic

models. Structural and dynamic models enable world modeling functions to simulate the results

of hypothesized actions for planning. They also enable the world model to predict the evolution

of state variables for recursive estimation and predictive filtering.

Df. Structural models are rules and equations that describe how physical structures

are kinematically connected and howforces and stresses are distributed.

Df. Dynamic models are rules and equations that describe howforces and inertias

interact with each other in time and space.
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4.4.14 Knowledge of Value

Value is an attribute that can be assigned to the worth of entities or events. Value can

also be assigned to the cost, risk, or benefit of situations, states, or plans. Value may be assigned

a priori, or may be computed by cost functions that change as a function of the situation. For

example, the worth value of an object may depend on its state. An object that is damaged or

used may be worth less than one that is undamaged and new. The value of an event may depend

on the situation in which it occurs. The sound of an approaching helicopter may be good or bad

depending on whether it is a friendly or enemy aircraft. For many control problems, the value of

a cost function is derived from an integral over a path through state space. The computation of

cost, benefit, and risk of tentative plans enables behavior generation planners to decide how
much effort to expend, or risk to accept, in attacking a target or in defending an object or

position.

4.5 Sensory Processing

Within each node of the 4D/RCS architecture, sensory processing (SP) processes operate

on data from sensors so that the world model (WM) processes can maintain the knowledge

database (KD) as a current and accurate estimate of the state of the world, including the internal

state of the system itself.

Sensory processing is organized around sensors. Each sensor produces a signal that

varies in time as the physical phenomena that it measures varies in time. SP processes operate

on sensory signals to window, group, filter, compare, classify, and interpret them as entities,

events, and situations that correspond, in a meaningful and useful way, to entities, events, and

situations in the real world. Output from SP processes is used by the WM processes to keep the

KD current and up-to-date. Output from the WM may be returned to the SP processes to

facilitate knowledge based windowing, grouping, filtering, comparison, classification, and

interpretation of sensory input.

SP processes exist at each level of the 4D/RCS control hierarchy. The level 1 SP
typically receives data from the physical sensors. The output from the lower level SPs feed into

the higher level SPs for further sensory processing to produce information about the world at the

corresponding levels of abstraction. In this sense, each lower level SP can be regarded as

providing “virtual sensors” for the next higher level SP process.

An intelligent vehicle may have many sensors, including visual, infrared, radar, laser,

acoustic, vibration, sonar, tactile, position, velocity, acceleration, force, torque, temperature,

pressure, magnetic, electrical, nuclear radiation, and chemical sensors. These sensors may be

grouped into a variety of sensory subsystems.

For example, vision subsystems may include black-and-white or color TV cameras,

forward looking infrared (FLIR), and laser range imaging (LADAR) cameras. SP processes in

visual subsystems may process images to compute brightness, color, spatial and temporal

gradients, stereo disparity, range, texture, shape, and motion. This information may be used to
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detect edges and boundaries, and measure the shape, position, orientation, of surfaces. The goal

may be to detect obstacles, to track targets, and to recognize objects, events and situations.

Camera platform encoders may measure the pointing direction of cameras relative to the vehicle,

and inertial sensors may enable the camera platforms to stabilize images and determine absolute

camera pointing direction and tracking velocity. This may enable SP processes to determine the

position and motion of objects in the world relative to the vehicle. Characteristic size, shape,

color, thermal signature, and motion enables the detection and recognition of objects, such as

roads, ditches, fences, rocks, trees, bushes, dirt, sand, mud, concertino wire, fire, smoke,

buildings, bodies of water, tanks, trucks, and people.

An acoustic subsystem may include microphone arrays and sonar sensors. SP processes

in the acoustic subsystem may process signals to detect frequency components, compare time

and frequency patterns with predicted acoustic events, measure correlations and differences,

close phase-lock loops and tracking filters. This information may be used to track and recognize

acoustic signatures from sources such as helicopters, jets, trucks, tanks, sniper fire, machine

guns, heavy weapons, exploding ordinance, sounds of footsteps, shouts, and voices.

A mobility sensor subsystem may include accelerometers, tilt meters, gyros, global

positioning satellite (GPS) receivers, odometers and speedometers to estimate position, velocity,

and heading. Internal vehicle sensors may provide information about fuel levels, engine

temperature, rpm, oil pressure, and vibration.

Each of these sensory subsystems has its own SP, WM, and VJ processes that extract and

evaluate information from the sensory data stream that is relevant to the behavioral task being

planned and executed in BG processes within the same node. As sensory data is processed, it is

filtered, windowed, and combined or grouped with data from other sensors into entities, events,

and situations with attributes and states that can be matched against known classes for

recognition and classification. In the process, signals are transformed into symbols. Arrays of

signals form images that are transformed into maps with identified regions that correspond to

entities and classes in the world. Symbols and maps at a variety of hierarchical levels represent

the information needed by the BG processes at each level to plan and execute behavior that

maximizes the intelligent system’s probability of success in accomplishing its behavioral goals.

4.5.1 Sensor Processing (SP) Functionality

Within each SP process, there are five basic processing functions.

(1) Windowing (or its inverse - masking) selects the regions of space and the segments of

time over which sensory inputs will be operated on by the SP process. The remainder of the

input can be masked out and ignored. The shape, position, and duration of spatial and temporal

windows and masks are determined by an attention function that defines those regions in the

image that are worthy of attention. The attention function selects regions that either: (a) are

relevant to tasks being addressed by the BG process, or (b) contain entities or events with

attributes that fall outside some expected norm or are designated as dangerous or otherwise
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noteworthy. Windowed regions can be assigned priorities and be allocated computational

resources in proportion to their relative importance.

(2) Grouping integrates or organizes subentities into entities and subevents into events.

Grouping segments, or partitions, images into regions that can be assigned entity labels, or

names, and it segments time into intervals that are assigned event labels, or names. Any
particular grouping is an hypothesis based on some gestalt heuristic such as: proximity

(subentities are close together in the image, or subevents are clustered along the time axis),

similarity (subentities have similar attributes such as color, texture, range, or motion, or

subevents have similar spectral properties or sequential relationships), continuity (subentities

have directional attributes that line up, or lie on a straight line or smooth curve), and symmetry

(subentities are evenly spaced or are symmetrical about a point, line, or curve).

Each entity grouping operation creates a region in an entity image consisting of a set of

pixels. Each entity grouping operation also creates an entity frame that is labeled with the name

of the entity. Each pixel in the entity image region has a pointer to the entity frame to which it

belongs. Each entity frame contains a set of “has_part” pointers with the names of the

subentities that belong to the entity. Each subentity has a “belongs_to” pointer that contains the

name of the parent entity to which it belongs. Finally, each entity frame has a pointer back to the

entity image that contains pixels belonging to it. These pointers are illustrated in Figure 31.
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Figure 31. Pointers between entity images and entity frames generated by each grouping hypothesis.

Each entity grouping hypothesis results in: (1) a segmented image in which each of the pixels in each

segment has a pointer to the entity frame to which it belongs; and (2) an entity frame for each segment,

with links to subentity frames, a link to a parent entity, and one or more links back to the image in which

the entity appears as a segmented and labeled region.

When entity grouping is performed at multiple levels, the result is a hierarchy of entity

images and entity frames such as shown in Figure 32. Event grouping at multiple levels

produces a hierarchy of events such as shown in Figure 28.
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Figure 32. The network of relationships between images and entity frames established by grouping

relationships at multiple levels in the 4D/RCS hierarchy.

There is, of course, no guarantee that any entity grouping hypothesis produces an internal

entity with any correspondence to an entity in the real world. Two pixels that are in close

proximity in an image may lie on completely different objects in the world. Two pixels of the

same color and intensity may lie on different objects, and two pixels with different colors and

intensities may lie on the same object. Edges that line up in an image may or may not lie on the

same edge in the world. There is also no guarantee that any event grouping hypothesis produces

an internal event that corresponds to an external event. Grouping hypotheses need to be tested,

and confirmed or denied, by observing how well predictions based on the grouping hypothesis

match subsequent observations of sensory data over time under a variety of circumstances. This

is sometimes called a “reality check.”

(3) Computation is a process that calculates attributes of entities and events. Event

attributes such as frequency components, waveform shape, duration, and temporal pattern of

motion can be computed by integrating over the duration of the event. Entity attributes such as

position, velocity, orientation, area, shape, and color can be computed by integrating subentity

attributes over the region of space covered by the hypothesized entity. For example, the area of a

surface entity in an image can be computed by counting the number of pixels contained in it.

The cross sectional area of an object entity can be computed by multiplying the area of its

projection in the image by the ratio of its range to the focal length of the camera. The lateral

velocity of an object entity can be computed by calculating the angular motion of the center of

gravity of the object in the image and multiplying by the range to the object. The radial velocity
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can be computed from range rate measurements. The orientation of an edge can be computed by

regression on a line of given orientation. For surface entities, attributes such as area, texture,

color, shape, and orientation can be computed. For surface boundaries entities, attributes such as

length, shape, and type (color or range discontinuity ) may be computed. For object entities,

attributes such as size, shape, color, texture, and state including position, orientation, and

velocity can be computed by integrating pixel attributes over the region occupied by the entity.

(4) Filtering is a process that reduces noise and enhances signal quality. The computed

values of entity attributes can be filtered over intervals of time by recursive estimation. This

accomplishes two purposes. First it computes a best estimate (over a window of space and time)

of entity attribute values based on correlation and difference between predicted and observed

attribute values. The resulting “best estimate” is a filtered value of the entity attribute. Second,

recursive estimation generates statistical properties such as confidence factors for observed and

estimated attribute values. The variance between observed and predicted attribute values can be

used to compute a confidence factor for the hypothesized entity. This can be used to confirm or

deny the grouping hypothesis that created the entity. If the variance between the observed and

predicted attributes is small, confidence in the grouping hypothesis is increased. If the variance

between the observed and predicted attributes is large, confidence is reduced. If the confidence

factor for entity attributes rises above a confirmation threshold, the grouping hypothesis that

generated the entity is confirmed. If the confidence falls below a denial threshold, the grouping

hypothesis is denied and a new grouping hypothesis must be selected.

(5) Classification (or Recognition) is a process that establishes a match between

confirmed entities and entity class prototypes stored in the system’s knowledge database.

Classification usually refers to assigning an observed entity to a generic entity class. Recognition

usually refers to assigning an observed entity to a specific entity class. If the attributes of both an

entity and a class prototype are expressed as vectors with corresponding elements, then their

similarity can be computed by taking the dot product between the two attribute vectors. If the

degree of similarity between the entity attribute vector and a class prototype vector exceeds a

recognition threshold, the entity is assigned membership in the class.

Classification generates for each geometric entity frame a pointer that contains the name

of the entity class to which that frame belongs. Classification also generates for each pixel in the

entity image, a pointer that contains the name of the entity class to which it belongs. Thus, for

each classified entity, the entity image is labeled with the name of the entity class. Thus image

and map overlays can be constructed with pixels that are labeled as roads, buildings, bridges,

targets, friendly forces, and enemy positions.

Once images and maps are labeled with entity names, additional overlays can be generated

that contain the attributes of the recognized entities. Images and maps can have regions labeled

with attributes such as traversability, risk, and priority or value for attack or defense. Maps with

such labels are what are often needed by the BG hierarchy for planning military missions and for

developing strategies, tactics, and maneuvers to accomplish those missions.
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Classification of events is also based on matching event attributes with the attributes of

event class prototypes. Classification establishes a match between an observed event and event

classes stored in the system’s knowledge database.

The five basic processing functions performed by each level of the SP hierarchy are

illustrated in Figure 33. Sensory processing at a level is typically performed within the context

of a task assigned to a BG process within the same RCS_NODE. The current task being planned

and executed in the BG selects, from a library of entity and event class frames in long-term

memory, a set of expected entities, events, and situations that are relevant to the task. This

narrows the search for a match between observed entities and entity classes. The task context

also influences the selection of gestalt hypotheses that perform grouping functions, as well as the

selection of attention functions that window those regions of the image that are important to the

task and therefore need to be processed. Those regions that are unimportant to the task can be

masked out and ignored.

At the upper right side of Figure 33, a task goal, priorities, and other parameters are

specified by a command to a BG process. This information enables the WM to select a list of

entity classes that are important for the task from a library of entity class frames that resides in

KD. These are arranged in priority order in a list of entities of attention. This list can be used by

another process within WM to compute what the entities on the list are expected (or known) to

look like and where in the image (or on the egosphere) they are expected (or known) to appear.

At the bottom right, WM provides estimates and predictions of what entities are expected

to look like and where they are in the world. What entities look like is defined by the attributes

in the entity class frames in the WM. What information provides guidance to the heuristic

selection of gestalt hypotheses that will be used to control the grouping of subentities into

entities. Where important entities can be expected to appear in the image can be computed from

the state-variables in the entity class frames in the WM. Where information provides guidance to

the heuristic processes that define windows of attention to be used to control pointing, tracking,

and masking operations.
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Figure 33. Image processing functions and data flow at a typical level in the SP hierarchy.

At the bottom left, subentity images enter SP to be processed. At the lowest level, the

subentity image is simply an array of pixels from the camera. At higher levels, the subentity

image might be a list entity image, a surface entity image, or an object entity image. Subentity

images are windowed to obtain image regions that are relevant to entities of attention.

Subentities that reside within relevant regions are then grouped into hypothesized entities and

assigned a group label. The labeled hypothesized entity image then goes two places: (1) it is

output to the next higher level, and (2) it is forwarded to the SP computation process where

attributes of hypothesized entities are computed. Computed attributes of hypothesized entities

are forwarded to a recursive estimation process that filters attribute values and generates a level

of confidence in each entity hypothesis. (Note that a confidence factor for each entity produces a

confidence image that is registered with the rest of the attribute and entity images). The

confidence image is used by three functions: (1) an SP process that confirms or denies the entity

hypothesis; (2) an SP process that broadens or narrows the window size; and (3) a WM process

that puts novel regions onto the list of entities of attention so that the novel regions can be

tracked and identified. The confidence image can also be used to compute confidence values for

each of the hypothesized entities.

Finally, at the top left of Figure 33, filtered attributes of confirmed entities are forwarded

to a SP/WM classification process where they are compared with attributes of class prototypes.

When the attributes of an entity match the attributes of a class prototype, the entity is classified

as a member of the class and the class pointer in the entity frame is set to the name (or address)

of the class frame. Each pixel in the hypothesized entity image then receives a class label to
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form a classified entity image. Classified entities can be stored in the KD, and each pixel in the

entity image can then inherit class attributes through its link to the entity frame.

Thus, goals and priorities of the task being planned and executed in the BG hierarchy

affects the processing of sensory information in at least three ways:

Task knowledge influences the selection of attention functions. Those regions that

are likely to contain information important to the task are windowed for processing.

Those regions that are unlikely to contain relevant information are masked out and

ignored.

Task knowledge influences the selection of gestalt hypotheses that perform grouping

functions. Those grouping hypotheses that support planned behavior are favored.

Task knowledge defines a set of expected entities, events, and situations that are

relevant to the task. This generates a set of expected entities and events and narrows

the search for a match between observed entities and stored entity classes.

4.5.2 A Typical Processing Node

The relationships and interactions between the BG, WM, KD, SP, and VJ processes in a

typical node of the 4D/RCS architecture are shown in Figure 34. The behavior generation (BG)

processes contain the Job Assignment (JA), Scheduling (SC), Plan Selector (PS) functions and

Executor (EX) subprocesses. The Planner (PL) module overlaps BG, WM, and VJ processes.

Planning involves the JA, SC, PS subprocesses, the WM simulator, and VJ plan evaluator. The

PS subprocess selects the best plan for execution by the EX subprocesses. The World Modeling

(WM) process supports the Knowledge Database (KD that contains both long term and short

term symbolic representations and immediate experience images. The WM contains the plan

simulator, where the alternatives generated by JA and SC are tested and evaluated, as well as

mechanisms for generating predicted images that can be compared with observed images. The

Sensory Processing (SP) process contains windowing, grouping, and filtering algorithms for

comparing predictions generated by the WM process with observations from sensors. SP also

has algorithms for recognizing entities and labeling entity images. The Value Judgment (VJ)

process evaluates plans and computes confidence factors based on the variance between

observed and predicted entity attributes.

Each node of the 4D/RCS hierarchy closes a control loop. Input from sensors is

processed through SP and used by the WM to update the knowledge database (KD). This

provides a current best estimate X and a predicted state X* of the world. A control law is

applied to this feedback signal arriving at the EX subprocess. The EX subprocess computes the

compensation required to minimize the feedback error between the desired state Xd and the

predicted state X* which emerges as a result of the SP/WM filtering process. The predicted state

X* is also used by the JA and SC functions and by the WM plan simulator to perform their

respective planning computations. Labeled entity images may also be used to generate labeled

maps (not shown in Figure 34) for path planning by the BG process.
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Figure 34. Relationships within a typical node of the 4D/RCS architecture A task command from

level i+1 specifies the goal and object of the task. The goal specification selects an entity from long term

memory and moves it into short term memory. The Planner generates a plan that leads from the starting

state to the goal state. The EX subprocesses execute the plan using predicted state information in the KD
short term memory. SP operates on sensory input from level i-1 to update the KD within the node, and

sends processed information to level i+1.

129



Within each node, windowing, grouping, computation, filtering, and recognition take

place. Also within each node, planning and control functions are based on the knowledge

maintained in the knowledge database, and lower level entities are recognized and grouped into

higher level entities. In each node, a model of the world is maintained that enables planning and

control functions relevant to that node; and an internal model of the world enables sensory

processing to analyze the past and behavior generation to predict the future so as to maximize

that node's ability to achieve commanded behavioral goals.

4.5.3 Hypothesize and Test

The SP and WM processes work together to establish and maintain a correspondence

between the real world and a model of the world in the knowledge database. SP processes

combine observations from sensors and lower level SP processes with predictions based on

knowledge already in the KD. Knowledge at time t is a combination of prior knowledge at time

t-1 plus observations from sensors and control signals sent to the output at time t. This can be

expressed as

KD(t) = KD(t-l) + Observation(t) (4.1)

where:

KD(t) is the knowledge represented in the knowledge database at time t

and

Observation(t) = Sensory input(t) + Control output(t) (4.2)

The KD is thus a current best estimate of the state of the world based on a-priori

information augmented by the entire history of all past observations of sensory input and the

entire string of tasks and commands that brought the system to its current state. It is this real-

time knowledge in the KD that allows the WM to predict the future and the BG to plan and

execute behavior that is intelligent. The ability to predict is crucial to improving the likelihood

of achieving behavioral goals amid the uncertainties of a world filled with mostly disinterested

entities and acts of nature, but interspersed with sometimes cooperative and often competitive or

hostile behavior of other intelligent agents.

Knowledge in the KD provides information for directing attention and masking or

windowing input from sensors. At each computational cycle t = k, sensory input is processed in

the context of the current task and the current knowledge database. The current model of the

world stored in the KD provides the basis for filtering of noisy data and predicting the future

state of the world. SP processes compare what is observed by sensors with what is predicted by

the WM. Good correlation confirms what is predicted and validates the models and hypotheses

upon which the predictions are based. Under these circumstances, BG processes can confidently

plan for the future and extrapolate through periods when sensory data is unavailable or noisy.

Small variance or correlation offsets may be used to update and correct the information in the
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KD and to refine predictive models. Poor correlation, or large variance between what is

predicted and observed, causes the system to reconsider its hypotheses and lower its confidence

in the models on which its predictions are based.

A simplified illustration of the hypothesize-and-test interaction between the SP and WM
processes is shown in Figure 35. The WM process hypothesizes a prediction based on the set of

estimated state variables that reside in the knowledge database. WM predictions are compared in

the SP processes with sensory observations. Sensory observations come directly from sensors or

from lower level SP processes. Correlations between sensory observations and WM predictions

indicate the degree to which WM predictions are correct. Differences and correlation offsets

indicate the error between the WM prediction and SP observation. If correlation exceeds

threshold, the hypothesis is verified, or confirmed. When the hypothesis is verified, focus-of-

attention can be narrowed, and residual difference values can be used to update estimated state

variables to improve the hypothesis. This is a recursive estimation process that includes

predictive filtering and temporal integration. On the other hand, if correlation falls below

threshold, the hypothesis is rejected, focus-of-attention is broadened, and a new hypothesis is

generated.

Sensory

Observations

Figure 35. Interaction between sensory processing (SP) and world modeling (WM). SP processes compare

sensory observations from sensors or from lower level SP processes with predictions generated by WM processes

from knowledge sorted in the knowledge database. Differences are used to update state variables in the KD.

Correlations that exceed threshold verify the hypotheses upon which the predictions are based.
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4.5.4 Recursive Estimation

Recursive estimation is a mathematical process by which a current best estimate of the

state of the world is maintained in the knowledge database. Given this estimated state, the world

model can generate predicted sensory input that can be compared with observed sensory input.

The variance between observed and predicted sensory data then used to compute a new best

estimate or the world state. This can be expressed by the formula

x(t|t) = x*(t|t- 1 ) + K(t)(y(t) - y*(t|t-l)) (4.3)

Where:

x(t|t) = estimated state of the world at time t after a measurement at time t

y(t) = observed sensory input at time t

y*(t|t-l ) = predicted sensory input at time t based on estimated state at time t-1

plus control output at time t-

1

K(t) = inverse measurement model and confidence factor

Within each node of the 4D/RCS architecture, interactions between SP observations and

WM predictions constitute a recursive estimation loop. The SP processes operate on data from

sensors (or from lower level SP processes) to compute observed attributes of entities y(t). WM
processes simultaneously generate predicted current attributes y*(t|t-l) based on the previous

best estimate of the state of the world x(t-l|t-l) stored in the knowledge database. SP processes

compare observed attributes with predicted attributes and compute variance. The WM processes

then use the variance y(t) - y*(t|t-l) to update the knowledge database, producing a new best

estimate x(t|t). Statistics are kept on the variance to assess the confidence in the model.

Hypothesize and test by recursive estimation is the fundamental paradigm of the 4-D

approach pioneered by Dickmanns et al over the past decade [Dickmanns 95, Dickmanns, et al.

94, Dickmanns 92a, Dickmanns 92b, Dickmanns and Graefe 88]. Dickmanns [92a] explains

Figure 36 as follows:

At the upper left, the real world is shown by a block; control inputs to the self vehicle

may lead to changes in the visual appearance of the world either by changing the viewing

direction or through egomotion. The continuous changes of objects and their relative position in

the world over time are sensed by CCD-sensor arrays (shown as converging lines to the lower

center, symbolizing the 3D to 2D data reduction). They record the incoming light intensity from

a certain field of view at a fixed sampling rate. By this imaging process the information flow is

discretized in two ways: There is a limited spatial resolution in the image plane determined by

the pixel spacing in the camera, and a temporal discretization determined by the scan rate of the

camera.

Instead of trying to invert this image sequence for 3D scene understanding, a different

approach of analysis through synthesis has been selected, taking advantage of the available

recursive estimation scheme from Kalman. From previous experience, generic models of objects

in the 3D-world are known in the interpretation process. This comprises both 3D shapes.
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recognizable by certain feature aggregations given the aspect conditions, and motion behavior

over time. In an initialization phase, starting from a collection of features extracted by low level

image processing (lower center left in Figure 36), object hypotheses including the aspect

conditions and the motion behavior (transition matrices) in space have to be generated (upper

center left in Figure 36). They are installed in an internal 'mental' world representation intended

to duplicate the outside real world. This is sometimes called 'world 2', as opposed to the real

'world T.
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Figure 36. Basic scheme for 4-D image sequence understanding by prediction error minimization

[Dickmanns 92a],

Once an aggregation of objects has been instantiated in the world 2, exploiting the

dynamical models for those objects allows the prediction of object states for that point in time

when the next measurements are going to be taken. By applying the forward perspective

projection to those features which will be well visible, using the same mapping conditions as in

the CCD sensor, a model image can be generated which should duplicate the measured image if

the situation has been understood properly. The situation is thus 'imagined' (right and lower

center right in Figure 36). The big advantage of this approach is that due to the internal 4D-

model not only the actual situation at the present time but also the Jacobian matrix of the feature

positions and orientations with respect to all state component changes can be determined (upper

block in center right, lower right comer). This need not necessarily be done by analytical means

but maybe achieved by numerical differentiation exploiting the mapping subroutines already

implemented for the nominal case. This rich information is used for bypassing the perspective

inversion via recursive least squares filtering through feedback of the prediction errors of the

features. More details are available in [Dickmanns and Graefe 88].
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A more recent version of the 4-D approach is shown in Figure 37. As in Figure 36, the

real world in 3-D space and time is mapped through camera optics onto a 2-D array of pixels in a

camera. Features are measured in the resulting image and compared with predicted features

derived by perspective mapping from predictions and expectations in an internal representation

of the real world in 3D space and time (i.e., 4-D). Predicted features are used to mask the

incoming image so as to eliminate regions of the image that are not of interest. This is intelligent

control of feature extraction.

t

Figure 37. A combination of the 4-D approach with RCS [redrawn from Dickmanns 96].

In those selected regions and for those measured features that correlate with predicted

features, correlation offsets are computed and used to update the state vectors of a selected set of

objects that are hypothesized to account for the measured features. As shown in Figure 37, there

are n objects (starting with object- 1, the self object). All objects have state vectors that are

represented in a 4-D coordinate frame whose three direction vectors are defined by the local

vertical and the tangent vector of the road, with the spatial origin set to the point on the road

center-line nearest to the vehicle. The time origin is at t = 0.

Correlation offsets are computed in image coordinates and must be transformed into the

4-D coordinate frame to update the object state vectors. This is accomplished by means of a

numerically computed inverse Jacobian. By systematically varying components of the object

state vectors, it is possible to compute a Jacobian matrix for each hypothesized object that

defines how the correlation offsets are related to changes in the state vector. A pseudo inverse is
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then computed and used to update the object state vectors in a recursive estimation loop. This

corresponds to the K(t) function in formula (5.4).

The recursive estimation loop can compute an estimate of the state of each object,

including its linear and rotational position, orientation, and velocity. A dynamical model of the

world embedded in a state-transition matrix then produces predicted states for each of the

objects. These predicted states are then transformed through a forward measurement model to

produce predicted image features for the next computation in the state estimation loop. The

UBM 4-D software closes this loop for up to 16 objects at 20 times per second [Dickmanns 96].

Measured features that do not correlate with predicted features are labeled as “unassigned

features” and sent to an object hypothesis generation process which draws upon a generic 4-D

object database. The object hypothesis generator may then create a new hypothesized object for

the list of objects. Hypothesized objects may be confirmed by good correlation between

measured features and predicted features. Confirmed objects may be entered into the generic 4-

D database.

Goals input to the generic 4-D object database may also initiate the generation of new

hypothesized objects. Goals are compared with the internal representation of the world in a

behavior decision process to generate control signals for the self object actuators. Predicted

trajectories can be evaluated for purposes of planning. Commanded and predicted trajectories

may also be used for model adaptation.

In the UBM 4-D approach, objects are the first level at which recursive estimation is

performed. Lower level detection of edges and surfaces are not individually tracked or filtered

over time. Objects in the current UBM system are relatively simple, consisting for the most part

of combinations of vertical and horizontal edges. However, more complex objects can be

incorporated.

Figure 38 is a more complete view of the UBM 4-D approach that shows more detail

about how feedback and feed forward control is accomplished and how objects become

instantiated in the 4-D world model. On the left, goals and values trigger mission elements

consisting of “good” control time histories (i.e., plans or schema) that have been learned from

experience. These produce both feed forward control commands and corresponding commanded
states that are compared with estimated states to provide error signals for feedback control

computation. Feedback compensation is added to feed forward commands and sent to the

actuators.

On the right, the 4-D model stores generic classes, dynamical models, and shape models.

Dynamical models are initialized by measurement and aggregation of features into hypothesized

objects. Dynamical models provide estimates and predictions of object position and aspect

conditions. Shape models are used to check for visible features.

Object state predictions are transformed through perspective projection into predicted

features that can be compared with measured features to compute prediction error feedback.
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This error is applied to disturbance recognition processes that update Kalman filter gains. The
error also provides measure of goodness for testing the object hypothesis.

Upward flowing information pathways provide input to a higher level control system that

recognizes situations, adapts model parameters, selects goals, triggers behaviors, and evaluates

results.
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Figure 38. Another view of the 4-D approach [from Dickmanns 96],

Figure 39 is a distillation of the basic 4-D principles shown in Figures 36 through 38

redrawn in a form that shows the interaction with the 4D/RCS BG process. The input to the BG
process is a task command from a higher level BG process. The planner module generates a plan

to perform the task. This plan is a state graph consisting of a series of planned actions and a

series of planned results (or subgoals). The planned actions are feed forward commands that are

issued by the BG executor at the appropriate time. The subgoals are desired states Xd that are

compared with predicted states X* to generate an error signal that is input to a feedback

controller. Output from the feedback controller Ufb is combined with the feed forward

commands Uff and sent to the next lower level in the BG hierarchy, or to the actuators (or

“virtual actuators” as defined by Albus and Meystel [96]).

136



Task Command

Figure 39. The 4-D recursive estimation concept integrated with a generic RCS BG process.

137



Figure 40 illustrates in more detail how the 4-D concepts shown in Figures 36 through 39

can be integrated with those of the RCS. At the upper right, a task command input into a BG
process causes the job assignor (JA) and scheduler (SC) functions to generate a string of

hypothesized actions. These are sent to a dynamic model of the world that generates a string of

simulated results. The actions and results are analyzed by cost functions in a VJ (value

judgment) process and the evaluations are provided to the plan selector. The hypothesized

actions and simulated results constitute a tentative plan. The planner selects the tentative plan

with the best evaluation as the plan to be executed. The plan is represented as a state graph in

which nodes are simulated results (subgoals, or desired states) and edges are hypothesized

(planned) actions. At execution time, the executor issues planned actions to actuators as feed

forward commands. These may be commanded camera motion or other commanded actions that

affect the image. Predicted states of objects are compared in the executor to subgoals (desired

states) from the plan. Differences are used to compute feedback compensation that is added to

feed forward commands.

Figure 40. The 4D/RCS for a generic level using camera egosphere coordinates for object state

estimation and prediction.
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On the lower left, sensors such as TV cameras or a laser range imager produce sensory

input. These inputs are windowed and features are extracted using knowledge of predicted

attributes and states of object entities. The result is a set of measured features such as brightness

edges and range values. These measured features are compared with predicted features. A set of

perturbed feature images produced by shifting each predicted feature one pixel at a time over the

correlation window is compared with the measured feature image and summed over the

correlation window. This produces a correlation function. The peak of the correlation function

yields the position error between the predicted and measured images. This error is used to

update the estimated vector x.

The estimated state vector is input to a dynamic model of the world which yields a

predicted state vector x*. Note that in Figure 40, all the entity state variables are expressed in

egosphere coordinates and recursive estimation is performed in egosphere coordinates. This

eliminates the need for perspective projection and for computation of the Jacobian and the

pseudo-inverse that are required in Figures 36 through 39.

4.5.5 Pyramids of Scale

At any level of the 4D/RCS hierarchy, any attribute image may be represented

simultaneously at several different scales (or resolutions) in a pyramid of images. The scale or

resolution of an image is determined by the size of the spatial and temporal sample collected by

each pixel. For any image, a lower resolution image may be derived by subsampling, or by

averaging attributes from several higher resolution pixels, to compute an attribute for each lower

resolution pixel. This process can be repeated to generate several levels of lower resolution.

Each higher level in the pyramid is lower in resolution by a geometric progression that is

determined by the ratio of subsampling (i.e., the number of pixels at each level that are averaged

at each level to yield a pixel at the next lower resolution.)

In the 4D/RCS, the hierarchy of resolutions provided by pyramid processing is

orthogonal to the hierarchy of entity classes and tasks that define levels in the 4D/RCS system.

This means that each entity image at each level in the geometrical entity class hierarchy can have

its own pyramid of resolution. In fact, each attribute image in Figure 21 can be represented at

four different levels of resolution: as a 256x256 pixel image, a 128x128 pixel image, a 64x64

pixel image, and a 32x32 pixel image.

The utility of pyramids of scale is primarily a reduction in the computational expense of

correlating two images. To compute a correlation value between a predicted and observed image

segment, the value of each pixel attribute in the predicted image segment must be multiplied by

the value of the corresponding pixel attribute in the observed image segment and the results

summed over the correlation window. To compute the correlation function, a correlation value

must be computed for every possible offset between predicted and observed image segments.

The number of calculations required to find the correlation function therefore increases as the

product of the number of possible offsets along each degree of freedom multiplied by the size of

the correlation window, all raised to the power of the number of degrees of freedom. This

computational burden can be minimized by reducing the resolution, making the correlation

window small, or reducing the number of degrees of freedom.
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Pyramid processing minimizes both the resolution and the size of the correlation window
at each level of the pyramid, yet maintains high resolution in the resulting correlation function by

successive approximations at several levels of scale. In pyramid processing, correlation is

performed first at the lowest resolution of the pyramid, and for only zero and plus or minus one

pixel offset in x and y directions (a total of 9 offsets). The resulting low resolution correlation

function can be used to make a course correction of the correlation offset. Correlation can then

be performed at a higher resolution scale, again for only zero and plus or minus one pixel offset.

A second more refined correction can then be made. This process can be repeated at each

successively finer scale of the pyramid, until the finest scale is reached. This is a form of binary

search for the correlation offset peak. By this procedure, the number of computations required to

compute the correlation function is significantly reduced. Correlation by pyramid processing

requires only the logarithm of the number of computations required by correlation at the finest

scale.

The peak of the correlation function indicates how much the predicted and observed

image segments are shifted relative to each other along each axis of freedom. The amount of

shift divided by the temporal separation between the two images provides a measure of the

image flow rate along each axis of freedom, i.e.:

dx/dt = Ax / At

dy/dt = Ay / At

where dx/dt is the image flow rate along the x-axis

dy/dt is the image flow rate along the y-axis

Ax = correlation peak offset along the x-axis

Ay = correlation peak offset along the y-axis

At = temporal separation between images

Pyramid processing techniques have been extensively studied at the David Samoff

Research Laboratory by Dr. Peter Burt and his associates. The Samoff team has developed

algorithms and special purpose computing hardware to implement pyramid processing for area

based correlation in real time. The hardware and software techniques developed by the Samoff

team vastly improves the speed and efficiency of the computation of correlation and difference

values over what can be achieved by conventional methods. The pyramid processing algorithms

also provide means for widening and narrowing the focus of attention, and for electronically

stabilizing images [Burt and Adelson 83, Burt 88, Burt et al. 89, Burt and van der Val 90].

4.5.6 Levels of Sensory Processing

At each level in the SP hierarchy there are five basic processing functions: windowing,

grouping, computation, filtering, and recognition. An example of a how these five functions can

be implemented at six different levels of the 4D/RCS hierarchy is given below.

s
The base of the logarithm is the ratio of resolutions at successive levels of the pyramid.
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Level 1 Regions: Point Entities and Events (i.e., Pixels and Samples)

The input to level 1 of the SP hierarchy is generated by sensors that detect energy derived

from entities and events in the environment. External entities may include actuators, tools,

materials, and objects. External events may include shots, explosions, movement of vehicles,

passage of lines, arrival-at or departure-from locations, completion of tasks, and accomplishment

of goals. Objects and events may interact in relationships and dynamic situations in the world.

Sensors measure phenomena that are caused by states, attributes, or conditions of entities

and events in the world. For example, encoders measure position, tachometers measure velocity,

accelerometers measure acceleration. Other types of sensors may measure force, torque,

temperature, or acoustic energy. Each photodetector in a CCD camera measures the visible

radiation imaged on it from a pixel sized region of the world. Pixels sample the spatial

dimension. The camera frame rate samples the temporal dimension.

Level 1 Windowing

At level 1 , windowing defines the region of space that is sampled by each sensor and the

duration over which a signal from each sensor is integrated. Windowing may also define how
often each sensor is sampled. For acoustic or microwave sensors, windowing may be performed

by pointing directional microphones or antennas at high priority targets. For position,

orientation, velocity, acceleration, and force sensors, windowing may consist of selecting those

signals that are relevant to the current servo task command for each actuator. For vision sensors,

windowing includes pointing and focusing each camera’s photodetector array on the region of

the egosphere that is most worthy of attention.

For example, on Demo HI vehicles, there are several cameras of different types with

different resolutions, fields of view, and frame rates. Based on the assigned mission, an attention

subsystem will focus the highest resolution cameras on the most important region in the image

while using lower resolution cameras to scan for other important regions. The attention system

may track the highest priority entity of attention, or saccade quickly from one high priority entity

to the next as the priority list is updated.

Level 1 Grouping

At level 1, grouping simply means that each sensor integrates, or groups, all the energy

impinging upon it during a sample interval. For example, each photodetector in a CCD camera

integrates the incoming visible radiation over the spatial region occupied by that photodetector

and over the temporal interval of an exposure time period.

Level 1 Measurement and Computation

A number of attributes can be directly measured for each pixel. In a black and white TV
camera, the intensity (I) of radiation at each pixel is measured. In a color TV camera, the

intensity of red, blue, and green light (r, g, b) at each pixel is measured. In a laser range imager
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(LADAR), or an imaging radar, a value of range (r) is measured at each pixel. For a forward

looking infrared (FLIR), the temperature at each pixel is measured. A pair of cameras with

overlapping fields of view may provide stereo image pairs.

Additional attributes for each pixel can be computed. For example, the x- and y-intensity

gradients (dl/dx, dl/dy) may be computed at each pixel by calculating the difference in intensity

between adjacent pixels in the x- and y-directions. or by applying a gradient operator such as a

Sobel operator on a neighborhood about a pixel. The temporal gradient (dl/dt) can be computed

by subtracting the intensity of a pixel at time t-1 from the intensity at time t, or by applying a

temporal gradient operator. Differences in range at adjacent pixels can be used to compute

spatial range gradients (dr/dx, dr/dy) and surface roughness, or texture (tx). Spatial range

gradients can also be computed from shading (dl/dx, dl/dy) when there is knowledge of the

incidence of illumination. Temporal differences in range at a point can yield range rate (dr/dt).

For a pair of stereo images, disparity can be computed at each pixel by a number of

algorithms. When combined with camera vergence and knowledge of camera spacing, disparity

can be used to compute range for each pixel at every point in time.

In cases where the camera image is stabilized (or camera rotation is precisely known),

spatial and temporal gradients can be combined with knowledge of camera motion derived from

inertial and speedometer measurements to compute image flow vectors (dx/dt, dy/dt) at each

pixel (except where the spatial gradient is zero. In this case, the flow rate sometimes can be

inferred from the flow of surrounding pixels). For stationary objects, time to contact (ttc) can be

computed from image flow. Under certain conditions, range at each pixel can also be computed

from image flow. [Albus and Hong90]

Level 1 Filtering

Each attribute image can be filtered in order to reduce or eliminate noise and to improve signal to

noise ratio. Figure 41 is an example of how recursive estimation might be used to filter attribute

images at level 1. In this example, each observed (i.e., measured or computed) attribute image is

compared with a predicted attribute image. The prediction process uses an estimate of the image

flow rate at each pixel to predict where a pixel attribute observed in an image at time t will occur

in the next image at t+1. The estimated flow rate at each pixel combines information from two

sources:

1. Estimated image flow rates (dx/dt, dy/dt) and range rate (dr/dt) that describe the

current motion of entities in the image.

2. Commanded camera motions and other actions that affect motion of entities in the

image.
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Figure 41. Image processing at level 1. Pixel signals from cameras are used to compute observed pixel attribute

images. These are compared with predicted pixel attribute images and the difference is used to update estimated

pixel attribute images. Perturbed attribute images are used to compute a correlation function over a set of mage

offsets. The peak of the correlation function is used to compute errors in the estimated pixel flow. This is combined

with higher level estimates of entity motions to estimate pixel flow at each pixel. Predicted pixel attribute vectors

are compared with pixel class attribute vectors to classify pixels and generate a labeled pixel class image.

The computation of image flow at a single pixel at a single point in time is notoriously

unreliable and noisy. However, filtering over an interval in time by recursive estimation has been

shown to provide considerable improvement in signal-to-noise ratio. Integration over a group of

points comprising an entity further improves the signal-to-noise. The computation of image flow

from a combination of entities at several different levels, each of which is recursively estimated, can

provide a robust estimate of image flow at each pixel. This is illustrated in Figure 41 where the

estimated flow rates dx/dt and dv/dt are computed from a combination of estimates, including:

1 . From the correlation offset between the predicted attribute image and the observed

attribute image at each pixel.

2. From the list entity flow estimate for the list entity to which the pixel belongs.

3. From the surface entity flow estimate for the surface entity to which the pixel belongs.

4. From the object entity flow estimate for the object entity to which the pixel belongs.

In equation form this can be expressed as:

dx/dt(x,y,t- 1 )
= cl * dx/dt(pixel) + c2 * dx/dt(list) + c3 * dx/dt(surface) + c4 * dx/dt( object)

dy/dt(x,v,t-l) = cl * dy/dt(pixel) + c2 * dv/dt(list) + c3 * dv/dt(surface) + c4 * dy/dt(object)
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Where:

cl = confidence in the pixel level flow computation for the pixel at x, y
c2 = confidence in the list level flow computation for the pixel at x, y
c3 = confidence in the surface level flow computation for the pixel at x, y
c4 = confidence in the object level flow computation for the pixel at x, y

And
cl + c2 + c3 + c4 = 1

This is illustrated in Figure 41. In the outer loop of Figure 41, correlation offset at each

pixel generates a measure of pixel flow error. This is added to the predicted flow rate to generate

an estimate of pixel flow rate. This is then combined with higher level estimates of list entity flow,

surface entity flow, and object entity flow to compute a best estimate of flow at each pixel.

Once a reliable estimate of image flow is known, the attribute of a pixel at position (x,y)

at time t-1 can be predicted to appear at position (x+dx, y+dy) at time t. This can be expressed

as:

I*(x+dx, y+dy, t) = I(x, y, t-1)

In Figure 41, a predicted intensity image I*(x,y,t) is generated from an estimated intensity

image I(x,y,t- 1 ) by computing the expected image motion for each pixel attribute based on image

flow estimates dx/dt(x,y,t- 1 ) and dy/dt(x,y,t-l) at each pixel, plus the effect of control signals

sent to the camera pan/tilt unit, plus other control actions effecting the image.

Comparison between predicted and observed images produces correlation and difference

values. The attribute difference between observed image I(x, y, t) and predicted (with zero

offset) I*(x, y, t) is used to update the attribute estimate. Correlation of the observed image with

a set of predicted images with different offsets produces a correlation function. The offset values

that produce the maximum correlation value indicate the amount of position error (Ax and Ay)

between the observed and predicted attribute images. These position errors divided by the

sample period yield the pixel flow error.

The combination of image flow estimates illustrated in Figure 4 1 suggests how recursive

estimation can provide a means for combining information about a single estimated pixel

attribute from several sources. Each level in the hierarchy produces an estimate of image flow

for each pixel. The higher levels estimate the flow rate of entities consisting of many pixels.

Each higher level computes flow estimates for entities with more pixels. Thus, combining flow

estimates from multiple levels produces good estimates of individual pixel flow rates at the

lowest level

Level 1 Classification

The final SP function performed at each level is classification. At level 1, this may be

accomplished by comparing estimated pixel attributes with attributes of a library of pixel

(geometric point) class prototypes. The set of attributes for each pixel define a pixel attribute
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vector. Geometric point classes might include: brightness-discontinuity, color-discontinuity,

range-discontinuity, range-gradient-discontinuity, and surface-continuity. Geometric point class

prototype attributes may include discontinuity size, shape, position, velocity, and orientation.

When the inner product of the estimated pixel attribute vector and the pixel class prototype

attribute vector exceeds threshold, the pixel is classified as belonging to the class. A single pixel

may belong to more than one geometric point class. For example, a single pixel may belong to a

brightness-discontinuity class, a range-discontinuity class, and a color-discontinuity class.

Upon classification, each pixel acquires a pointer to the pixel class to which it belongs.

The classification process thus generates a pixel entity image where each pixel in each entity

image has pointers to the pixel classes to which the pixel belongs.

Summary of level 1:

1 . A portion of the egosphere is windowed onto each sensor.

2. The energy falling on each sensor is integrated over a sample interval in space and

time.

3. Observed values are computed for a set of attributes for each pixel.

4. Pixel attributes are filtered (possibly by recursive estimation). Estimated and

predicted values are computed for each attribute of each pixel by a recursive

estimation filter process.

5. Each pixel is classified as a member of a geometrical point entity class, and a pixel

entity image is formed in which each pixel has a pointer (or pointers) to the class (or

classes) to which it belongs.

Note that in Figure 41 there are two recursive estimation loops. The first loop is for

estimating state (i.e., position and velocity) at each pixel. The second loop is for estimating

attributes such as size, orientation, and class. The position of predicted attribute images may be

systematically perturbed in order to find the peak of the correlation function and compute the

correlation offset at each pixel. This can then update the flow and range-rate estimates for each

pixel. The pixel flow and range-rate estimates also incorporate higher level entity motion

estimates for list, surface, and object entities to which that pixel belongs. For estimating pixel

attributes other than state, the error between observed and predicted attributes can be used

directly to update estimated attribute values.

The two recursive estimation loops shown in Figure 41 are analogous to the “WHAT”
and “WHERE” channels that are known to exist in the visual processing hierarchy in primate

brains.

In the 4D/RCS:

1. The “WHERE” channel computes estimated state (e.g., position and velocity) of entities

in the image. Estimated state is then used to predict where to expect entities to appear

next in the image.
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2. The “WHAT” channel computes attributes that describe distinguishing characteristics of

entities in the image. These include brightness, color, size, shape, texture, sound, taste,

feel, or smell.

Both “WHERE” and “WHAT” attributes can be used to identify, recognize, classify, or

name entities in the image, and by projection, in the external world. Both channels also provide

information that is useful in windowing, grouping, and segmentation. The “WHERE”
information may be used to group subentities into entities (or regions) based on state, (i.e., how
subentities are connected, or how they move together in the image.) The “WHAT” information

may be used to group subentities based on similarity of attributes or class.

Level 2 Regions: List entities and events

At level 2 of the SP hierarchy, groups of a few (on average about ten) pixels with

attributes that correspond to a list entity class can be grouped, processed, and analyzed as level 2

regions, or list entities. For example, a group of pixels with contiguous brightness or color

gradients might be grouped, processed, and analyzed as a list entity such as an edge, vertex, or

surface patch. Also at level 2, temporal strings or patterns of attributes from a single sensor can

be grouped, processed, and analyzed as level 2 events. For example, a temporal signal, or

sequential pattern of intensity attributes from an acoustic sensor might be grouped as a tone, a

frequency, or a phoneme.

Level 2 Windowing

Windowing consists of placing windows around regions in the image that are designated

as worthy of attention. At level 2, the selection of which regions to so designate may depend on

the goal and priorities of the current level 2 task. The selection of a window may also depend on

the detection of noteworthy attributes of pixels or higher level entities. The shape of each

window is determined from the shape of recognized list entities. The size of each window is

determined by the confidence factor computed by the level 2 recursive filtering process. If the

estimated entity confidence value is high, each window will be narrowed to only slightly larger

than the set of pixels in the corresponding list entity region. If the estimated entity confidence

value is low, the windows will be significantly larger than the level 2 list entity regions. Until

there exists a set of recognized list entities, level 2 windows are set wide open.

Level 2 Grouping

At level 2, grouping is a process by which neighboring pixels of the same class with

similar attributes can be grouped to form higher level entities. Information about each pixel’s

class is derived from the classified pixel entity image. Information about each pixel's orientation

and magnitude is derived from pixel attribute images. Grouping is performed by a heuristic

algorithm based on gestalt principles such as contiguity, similarity, proximity, pattern continuity,

or symmetry. The choice of which gestalt heuristic to use for grouping may depend on an

attention function that is determined by the goal of the current task, and on the confidence factor

developed by the recursive estimation process at level 2. Grouping causes an image to be

segmented, or partitioned, into regions (or sets of pixels) that correspond to higher order entities.
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For example, at level 2 contiguous pixels in the same geometric entity class (i.e., with

similar attributes of range, orientation, and flow rate) can be grouped into level 2 regions. Of
course, any grouping is a hypothesis that the pixels in the group all lie on the same entity in the

world. The grouping process thus generates a hypothesized list entity image in which each group

is assigned a label that is a pointer to a list entity frame. A grouping hypothesis can be tested by

a recursive estimation algorithm applied to each of the hypothesized entities. If the recursive

estimation process is successful in predicting the observed behavior of a hypothesized entity in

the image, then the grouping hypothesis for that entity is confirmed. On the other hand, if the

recursive estimation process is not successful in predicting the behavior of the hypothesized

entity, the grouping hypothesis will be rejected, and another grouping hypothesis must be

selected.

In practice, a number of grouping hypotheses may be tested in parallel if the

computational resources are available. In this case, the grouping hypothesis with the greatest

success in predicting entity behavior will be selected. In either case, the measure of success in

predicting behavior is the confidence factor computed by the recursive estimation algorithm for

the estimated entity or event.

The result of the grouping process is that each pixel in the group has a pointer set to the

name (or location) of a geometric list entity frame with slots for attributes of the list entity. A
back-pointer in each list entity frame also is set to the list entity image as illustrated in Figure 22.

Level 2 Computation

Each of the regions defined by the grouping hypotheses have attributes that can be

computed. Entity attributes differ from pixel attributes in that they are integrated over the entire

group of pixels comprising the entity. For example, edge entities have attributes such as length,

curvature, orientation, position and motion of the edge center of gravity. Surface-patch entities

have attributes such as area, texture, average range, average surface gradient, average color,

position and motion of the center of gravity. For each hypothesized level 2 grouping, computed

entity attributes fill slots in an observed list entity frame.

Level 2 Filtering

At level 2, a recursive estimation process compares observed list entity attributes with

predicted list entity attributes that are generated from estimated list entity attributes. Prediction

is a function of information from two sources: (1) estimated dynamic attributes such as image

flow rates (dx/dt, dy/dt) and range rate (dr/dt) that describe the motion of entities in the image;

and (2) commanded actions that affect motion of entities in the image.

Comparison of observed entity attributes with predicted entity attributes produces

correlation and difference values. Difference values are used to update the estimated entity

attribute values. Estimates of image flow rates of entities at level 2 are generated from a

combination of correlation offsets generated at level 2, plus estimates of flow attributes from

higher levels. A confidence level for each estimated entity attribute value is computed as a
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function of the correlation and difference values. If predictions based on estimated entity

attributes successfully track the behavior of observed entity attributes, the confidence level rises.

When the confidence level of the recursive estimation filter rises above threshold, the

hypothesized list entity grouping is confirmed. If the confidence level of the recursive

estimation filter falls below threshold, the hypothesized level 2 grouping is rejected, and another

grouping hypothesis must be selected.

Level 2 Classification

The classification process compares the attributes of each estimated list entity with

attributes of geometric list entity class prototypes such as range-edges, brightness-edges, color-

edges, surface-slope-discontinuity-edges, surface-patches, or vertices of various kinds. Another

classification process may compare the attributes of each estimated list entity with attributes of

generic list entity class prototypes such as road edges, building edges, tree trunk edges, patches

of ground, the near edge of a ditch, the far edge of a ditch, the crest of a hill.

Upon classification, the list entity frame and all the pixels in the list entity image have a

pointer set to the name (or names) of the list entity class (or classes) to which the frame and all of

its pixels belong. Each list entity frame also has a back-pointer to the list entity image.

Summary ofLevel 2:

( 1 ) Regions of the image containing list entities of attention are windowed.

(2) Pixels with similar attributes are tentatively grouped into level 2 regions, or

hypothesized list entities.

(3) The attributes of each hypothesized list entity are computed.

(4) The attributes of each hypothesized list entity are filtered by recursive estimation, and

each grouping hypothesis is either confirmed or rejected.

(5) The attributes of each confirmed list entity are compared with the attributes of a set of

list entity class prototypes, and those that match are assigned to list entity classes.

Object entity frames are given pointers to the class to which they belong.

Figure 42 summarizes the set of operations and data performed by vision SP and WM
processes at level 2 (and higher). At level 2, the input is the labeled pixel image from level 1. At

the lower left of Figure 42, labeled pixels are windowed by a goal directed attention function that

masks out pixels that are irrelevant to the goal. A gestalt hypothesis then is used to group

labeled pixels into level 2 regions (i.e., list entities such as edges, vertices, and surface patches.)

The resulting hypothesized list entity image can then be used to compute attributes and states of

list entities. For edge entities, attributes may include length and curvature. For vertices,

attributes may include type (e.g., T, Y, V, or line-end vertices). List entity states may include

position (x,y,r), orientation (0), and velocity (vx, vy, vr, v0). For surface patches, attributes may
include area, texture, color, shape, and surface orientation. State includes position and velocity.

Hypothesized list entities can be correlated with a predicted list entity image computed

from a previously estimated list entity image. Correlation offsets between each list entity in the

hypothesized and predicted image are used to update the estimated motion for each list entity.
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Perturbations of predicted entity images produce a correlation function for each list entity from

which the correlation offset error for each list entity can be computed. Correlation offset errors

are combined with predicted flow rates for each entity to produce list entity flow estimates.

These, combined with surface and object motion predictions, provide updated estimates of list

entity motion. Estimated motion, combined in a dynamic model with commanded actions,

produce predicted list entity motion. This, applied to the estimated list entity image, produces

the predicted list entity image.

Figure 42. Image processing at level 2 and above. Labeled pixels are windowed and grouped into level

2 regions to form a hypothesized list entity image. This is compared with a predicted list entity image

generated by recursive estimation and prediction. Differences are used to update the estimated list entity

image. Perturbed entity images are used to compute a correlation function over a set of image offsets. The

peak of the correlation function is used to compute errors in the estimated flow for the list entities in the

image. This is combined with higher level estimates of entity motions to estimate list entity motion. The

predicted list entity image is combined with predicted pixel attribute images to generate predicted list entity

frames with list entity attribute and list entity state vectors. The predicted state vector can be used as

feedback in the BG module. The predicted attribute vector is compared with expected list entity classes to

classify entities. The result is a set of recognized entity frames and a labeled list entity image.

Pointers in the predicted list entity image are used to address pixels in predicted pixel

attribute images so as to compute attributes for list entity frames. The attributes of estimated list

entity frames are then compared with the attributes of expected list entity class prototypes. If the

dot product between the estimated and expected entity class attribute vectors rises above

recognition threshold, the estimated level 2 regions are recognized as members of generic or

specific list entity classes. The names of the classes are attached as labels to the predicted list

entity image regions to produce a labeled list entity image. Class names are also attached to

estimated entity frames as a sign of class membership. The result is that class names are
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assigned to regions in the entity image and class names are assigned to entity frames that are

passed upward to the next level of processing. Predicted entity motion is passed downward to

update pixel level motion estimates.

Recursive estimation can be performed on entity attributes and states at all levels. The
confidence factor that is generated by the recursive estimation process for each hypothesized

entity can be used to confirm or deny the gestalt grouping hypothesis. If the confidence factor

rises above a recognition threshold, the hypothesis is confirmed. If confidence falls below a

doubt threshold, the gestalt hypothesis is denied and a new grouping hypothesis must be selected.

The recursive loops illustrated in Figure 42 are repeated at level 3 to produce labeled

surface and boundary entity images linked to classified surface and boundary entity frames.

They are repeated again at level 4 to produce labeled object entity images linked to classified

object entity frames. They are repeated again at level 5 to produce labeled group (section) entity

images linked to classified group (section) entity frames.

Because each pixel carries an estimated range attribute, labeled entity images can be

transformed into world coordinates to produce topographic maps with labeled regions and icons

at all levels in KD. Such maps can be used by the behavior generating processes at the

corresponding levels for path planning. At each level of the WM and KD that service the BG
hierarchy, maps of different range and resolution are used for different planning horizons and

different levels of detail.

At each level, expected entities are drawn out of long term memory when referenced by

task goals. Unexpected entities are discovered by applying gestalt grouping hypotheses to

unassigned subentities with common attributes. Unexpected entities that have significance to

behavioral goals are noted and entered into the world model as hypothesized geometric entities.

Recursive filtering confirms or rejects the entity hypothesis, and attributes of the unexpected but

confirmed entity can be compared with attributes of known entity classes. If the unexpected

entity is classified, it inherits the attributes of the entity class to which it belongs. If it is not

classified, a new class is established so that it can be recognized the next time it is encountered.

Whether or not the unexpected entity is classified as belonging to a known class, it becomes a

part of the knowledge database where it may influence behavior generation in a number of ways

including the selection of future tasks. For example, the behavior generation system may initiate

a task to inspect, pursue, or avoid the unexpected entity.

Level 3 Regions: Surface Entities and Events

At level 3 of the SP hierarchy, groups of list entities with geometric attributes that

correspond to a surface entity class can be grouped, processed, and analyzed as level 3 regions

called surface entities. For example, a set of contiguous surface patch list entities with similar

range and motion might be grouped, processed, and analyzed as a surface entity. A set of edge

and vertex entities that are contiguous along their orientation might be grouped, processed, and

analyzed as a surface boundary entity. Temporal strings of level 2 events with attributes that

correspond to level 3 events can be grouped into level 3 events such as sonograms, or 2-

dimensional surfaces in frequency and time. For example, a temporal string of phonemes might
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be grouped as a word, or a temporal string of outputs from a set of frequency filters as a note or

phrase in an acoustic signature.

Level 3 Windowing

At level 3, windowing consists of placing windows around regions in the labeled list

entity image that are designated as worthy of attention. The selection of which regions to

window is made by an attention function that depends on the goal and priorities of the current

level 3 task, or on the detection of noteworthy attributes of estimated surface entities, or on

inclusion in a higher level entity of attention. The shape of the windows is determined by the

class of regions in the surface entity image. The size of the windows is determined by the

confidence factor associated with the degree of match between the predicted surface entities and

the observed surface entities.

Level 3 Grouping

At level 3, recognized list entities in the same class are grouped into level 3 regions

called surface entities based on gestalt properties such as contiguity, similarity, proximity,

pattern continuity, and symmetry. Surface patches in the same class that are contiguous at their

edges and have similar range, velocity, average surface orientation, and average color may be

grouped into surface entities. Edges and vertices in the same class that are contiguous along

their orientation with similar range and velocity may be grouped into boundary entities.

Grouping is a hypothesis that all the pixels in the group have the common property of imaging

the same physical surface or boundary in the real world. This grouping hypothesis is confirmed

or rejected by the level 3 filtering function.

Level 3 Computation

Observed level 3 regions have attributes such as: area, shape, position and motion of the center-

of-gravity, range, orientation, surface texture, and color. Surface boundary entities have

attributes such as boundary type, length, shape, orientation, position and motion of the center of

gravity, and rotation. Boundary types may include intensity, range, texture, color, and slope

boundaries. For each level 3 region, computed entity attributes fill slots in an observed surface

entity frame.

Level 3 Filtering

A recursive estimation process compares observed surface entity attributes with predicted

surface entity attributes generated from estimated surface entity attributes, planned results, and

predicted attributes of parent entities. Comparison produces correlation and difference values.

Difference values are used to update the estimated surface entity attributes. Correlation values

are used to update estimates of entity motion. A confidence level associated with each estimated

entity confirms or rejects the surface entity grouping hypothesis that created it.
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Level 3 Classification

The classification process establishes a match between estimated surface entities and a

generic or specific class of surface entity prototypes in the world model knowledge database.

Typical generic surface entity classes are the surface of the ground, tree foliage, tree trunks, sides

of buildings, roofs of buildings, road lanes, fences, or lake surface. As a result of classification,

a labeled surface entity image is formed in which each pixel has a pointer to (or the name of) the

surface entity class to which it belongs.

Summary ofLevel 3 Sensory Processing

( 1 ) Portions of the image containing surface entities of attention are windowed.

(2) List entities with similar attributes are tentatively grouped into level 3 regions, or

surface entities.

(3) The attribute values of each geometric surface and boundary entity are computed.

(4) Attributes of each hypothesized surface entity are estimated by recursive estimation

and each grouping hypotheses is either confirmed or rejected.

(5) The attributes of each confirmed surface entity are compared with the attributes of a

set of surface entity class prototypes, and those that match are assigned to section entity

classes. Surface entity frames are given pointers to the class to which they belong.

Level 4 Regions: Object Entities and Events

At level 4 of the SP hierarchy, groups of level 3 entities with attributes such as range,

motion, orientation, color, and texture that correspond to an object entity class can be grouped,

processed, and analyzed as level 4 regions, or object entities. For example, a group of surfaces

with coincident boundaries and similar or smoothly varying range and velocity attributes might

be grouped into an object such as a building, a vehicle, or a tree. Attributes of surface entities

comprising each object entity are combined into object entity attributes. Also at level 4,

temporal strings of level 3 events such as words might be grouped into a sentence, or acoustic

signatures might be grouped into a level 4 event.

Level 4 Windowing

At level 4, windowing consists of placing windows around regions in the image that are

classified as worthy of attention. The selection of which regions to so classify depends on the

goal and priorities of the current level 4 task, or on the detection of noteworthy attributes of

groups of level 3 regions. The shape of the windows is determined by the set of pixels in the

recognized object entity image. The size of the windows is determined by the confidence factor

generated by level 4 recursive estimation operations.

Level 4 Grouping

At level 4, recognized surface entities in the same class are grouped into level 4 regions,

or object entities, based on gestalt properties such as contiguity, similarity, proximity, pattern

continuity, and symmetry. Surfaces in the same class that are contiguous along their boundaries
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and have similar range and velocity may be grouped into object entities. Boundaries that

separate surfaces with different range, velocity, average surface orientation, and average color

are used to distinguish between different objects. Level 4 grouping is a hypothesis that all the

pixels in the region have the common property of imaging the same physical object in the real

world. This grouping hypothesis is confirmed or rejected by the level 4 filtering function.

Level 4 Computation

For each of the hypothesized object entities, entity attributes such as position, range, and

motion of the center-of-gravity, average surface texture, average color, solid-model shape,

projected area, and estimated volume can be computed. For each hypothesized object entity,

computed attributes fill slots in an observed object entity frame.

Level 4 Filtering

A recursive estimation process compares observed object entity attributes with

predictions based on estimated object entity attributes. Included in the prediction process are the

estimated motions of object entities, and expected results of commanded actions. Comparison of

observed entity attributes with predicted entity attributes produces correlation and difference

values. Difference values are used to update the attribute values in the estimated object entity

frames. A confidence level is computed as a function of the correlation and difference values. If

the confidence level of the recursive estimation filter rises above threshold, the object entity

grouping hypothesis is confirmed.

Level 4 Classification

The classification process compares the attributes of each confirmed object entity with

attributes of object entity class prototypes stored in the knowledge database. A match causes a

confirmed geometrical object to be classified as a generic, or a specific object. For a ground

vehicle performing a typical task, a list of generic object classes may include the ground, the sky,

the horizon, dirt, grass, sand, water, bush, tree, rock, road, mud, brush, woods, log, ditch, hole,

pole, fence, building, truck, tank, etc. There may be several tens, hundreds, or even thousands of

generic object classes in the KD. A list of specific object classes may include a specific tree,

bush, building, vehicle, road, or bridge. As a result of classification, a match between an object

entity frame and a labeled object entity image is formed in which each pixel has a pointer to the

object entity class to which it belongs.

Summary ofLevel 4:

(1) Portions of the image containing object entities of attention are windowed.

(2) Surface entities with similar attributes are tentatively grouped into level 4 regions, or

object entities.

(3) The attribute values of each hypothesized object entity are computed.

(4) Attributes of each hypothesized object entity are estimated by recursive estimation

and each grouping hypotheses is either confirmed or rejected.
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(5) The attributes of each confirmed object entity are compared with the attributes of a set

of object entity class prototypes, and those that match are assigned to object entity

classes. Object entity frames are given pointers to the class to which they belong.

Level 5 Regions: Section Entities and Events

At level 5 of the SP hierarchy, groups of object entities with similar range, motion, and

other attributes are grouped, processed, and analyzed as a group, collection, or assemblage of

objects. For the Demo III Scout Platoon scenario, the smallest group is called a Section.

Attributes of object entities comprising each section entity are combined into section entity

attributes. Also at level 5, temporal strings of level 4 events are integrated into level 5 events.

Level 5: Windowing

At level 5, windowing consists of placing a window around regions in the image that are

classified as section entities-of-attention. The selection of which regions to so classify depends

on the task, and on detection of entity attributes that are worthy of attention. The shape of the

windows is determined by the collection of pixels in a confirmed section entity image. The size

of the windows is determined by the confidence factor associated with the level 5 recursive

estimation process.

Level 5: Grouping

Object entities in the same class are grouped into level 5 regions, or section entities,

based on gestalt properties such as contiguity, similarity, proximity, pattern continuity, and

symmetry. Objects in the same class that are near each other and have similar range and velocity

may be grouped into section entities. These grouping hypotheses will be confirmed or rejected

by the level 5 filtering function.

Level 5: Computation

For each of the hypothesized section entities, attributes such as position, range, and

motion of the center-of-gravity, density, and shape can be computed. These computed attributes

become observed entity attributes in an observed section entity attribute frame.

Level 5: Filtering

A recursive estimation process compares observed section entity attributes with

predictions based on estimated section entity attributes and expected results of commanded
actions. Comparison of observed section entity attributes with predicted entity attributes

produces correlation and difference values. Difference values are used to update the attribute

values in the estimated section entity frames. A confidence level is computed as a function of

the correlation and difference values. If the confidence level of the recursive estimation filter

rises above threshold, the section entity grouping hypothesis is confirmed.
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Level 5: Classification

The classification process compares the attributes of each confirmed section entity with

attributes of section entity class prototypes stored in the knowledge database. A match causes a

geometric section entity to be classified as a generic, or a specific section entity in the world

model knowledge database. For example in the case of a ground vehicle, a list of generic section

classes may include a woods, fields, groups of vehicles, groups of people, and clusters of

buildings. A list of specific section classes may include a specific group of humans, trees,

bushes, buildings, vehicles, or the intersection of two or more roads.

As a result of classification, a new class image is formed in which each pixel has a

pointer to (or the name of) the generic or specific section entity class to which it belongs. There

may be several tens, hundreds, or even thousands of section classes in the KD.

Summary ofLevel 5 SP:

( 1 ) Portions of the image containing section entities of attention are windowed.

(2) Object entities with similar attributes are tentatively grouped into level 5 regions, or

section entities.

(3) The attribute values of each observed section entity are computed.

(4) Attributes of each hypothesized section entity are estimated by recursive estimation

and each grouping hypotheses is either confirmed or rejected.

(5) The attributes of each confirmed section entity are compared with the attributes of a

set of section entity class prototypes, and those that match are assigned to section entity

classes. Object entity frames are given pointers to the class to which they belong.
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5.0 GENERIC SHELL

It is clear from the foregoing discussion that there are many differences between nodes at

different levels of the 4D/RCS architecture as well as between different units within the

organization. There are differences in the nature of the data, the range and resolution of space

and time, the scope of planning, and the level of detail in plans and actions. There are

differences in responsibilities, and in the kinds of knowledge, skills, and abilities. But, there are

also many features of 4D/RCS nodes that are common between nodes at all levels and in all

organizational units. For example, all nodes function as augmented state-machines. When
triggered, they read their inputs, compute a set of functions, make decisions, write outputs, and

wait for the next trigger. When triggered, all nodes run to completion and wait until the next

trigger. All nodes can have built-in diagnostics that describe their current state, their current

inputs, outputs, and a trace of recent history. All nodes can keep statistics regarding execution

time and other parameters.

This commonality suggests that a Generic Shell might be constructed that could serve as

a software development tool as well as serve as a basis for debugging and diagnostic procedures.

Figure 43 shows an example of a Generic Shell for Behavior Generation at the Servo level for

the Velocity Subsystem. Commands to the Servo level indicate the desired acceleration and yaw
rate to be achieved 50 ms in the future. The Job Assignor decomposes this task into a

commanded position for the steering wheel actuator, a commanded brake pedal force, a

commanded throttle position, and a commanded gear shift setting - all to be achieved 50

milliseconds in the future. For each actuator, a Scheduler generates a schedule of planned

actions and planned states over the 50 ms interval. Selected job plans are placed in a plan data

structure in the Executor where they are accessed by a plan sequencer. On each cycle of the

controller, each executor selects a planned action and a desired resulting state from its respective

plan (stored as a state table). The planned action is sent to the control law as a feed forward

action. Simultaneously, the desired resulting state is compared with the feedback predicted state

from the world model. The difference between the feedback predicted state and the planned state

is a feedback error that is also sent to the control law where compensation is computed and

added to the feed forward planned action.
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Figure 43. An example of the 4D/RCS Generic Shell for behavior generation at the Servo level.

A generic shell for behavior generation makes it relatively easy to program at this level of

complexity. The generic shell provides the timing and communication functions and allows the

system designer to think in terms of planning and control algorithms rather than C++ code

constructs. A number of software engineering tools have been developed for constructing generic

shell modules. These range in degree of formality from C++ templates to Unified Modeling

Language (UML) and Architectural Description Languages (ADL) [Huang 2001] [Messina

2000] [Dabrowski 1999]. A tool developed by John Horst at NIST uses Control Shell [Horst

00]. Another tool developed by Will Shackleford at NIST is written in Java. [GaziOl] Additional

tools are being developed at Ohio State University using a LabView front end, [GaziOl] and by

Pathway Technologies using MatLab as a front end [Anathakrishnan02]
9

Figure 44 shows the organizational structure for behavior generation generic shells at the

Primitive (Prim) and Subsystem levels integrated with those at the Servo level. The Driving

Subsystem at the Subsystem level is decomposed into the Camera Subsystem and the Vehicle

Subsystem at the Prim level, and into the Pan/Tilt Subsystem and the Velocity Subsystem at the

9 9
Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case

does such identification imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the

purpose.
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Servo level. The Servo planner looks ahead 50 ms in the plan generated by the Prim level. The

Prim planner looks ahead 500 ms in the plan generated by the Subsystem level. The Subsystem

level planner looks ahead 5 seconds in the plan generated by the Vehicle level. At each level, the

planner always looks ahead at least to its own planning horizon in the higher level plan.
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Figure 44. Generic shell BG modules at the Subsystem, Primitive, and Servo levels.
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6.0 SUMMARY AND CONCLUSION

The 4D/RCS reference model architecture will evolve as technology and standards

advance. Over the past five years, it has been implemented on the Demo HI experimental

unmanned ground vehicles with great success. However, the implementation lags behind

architecture specification. Not all of the features described in this document have been

implemented. The architecture is most fully implemented in the Behavior Generation hierarchy.

Multi-level, multi-resolution, real-time planning has been implemented very successfully at the

vehicle level and below. The world model consists mainly of terrain elevation maps with labeled

pixels. Map pixels have been classified as road, grass, water, and obstacles with attributes of

slope and roughness. A priori maps contain information about roads, streams, buildings, and

wooded areas. As yet, little has been done in grouping pixels into entities or signals into events,

and no significant relationships have been established that describe situations. Work has begun

on the representation of moving objects. Very little has been implemented that corresponds to

the section level or above. It is expected that as work continues, some features may be added to

the architecture, while others may be modified or deleted. However, the work on Demo HI to

date suggests that the 4D/RCS architecture is fundamentally sound and a reliable roadmap for

system development and integration.

The 4D/RCS reference model architecture is naturally adaptable to the DoD/Army
standards in a combined domain of vehicle systems, combat support, and software engineering.

4D/RCS provides an architectural framework to facilitate component and interface standards

development, including command and control, sensors, communication, mapping, operating

environments, safety, security, software engineering, user interface, data interchange, and

graphics. As such, the 4D/RCS reference model architecture forms an architectural framework

for standards.
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PRODUCT/COMPANY DISCLAIMER

Commercial equipment and materials are identified in order to adequately specify certain

procedures. In no case does such identification imply recommendation or endorsement by the

National Institute of Standards and Technology, nor does it imply that the equipment or materials

identified are necessarily the best available for the purpose.
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